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1

As more end-user applications depend on Internet of Things (IoT) technology, it is essential the networking protocols underpinning2

these applications are reliable. Using Formal Methods to reason about protocol specifications is an established technique, but, due3

to their perceived difficulty and mathematical nature, receive limited use in practice. We propose an approach based on Milner’s4

bigraphs—a flexible diagrammatic modelling language—that allows developers to “draw” the protocol updates as a way to increase5

use of formal methods in protocol design. To show bigraphs in action, we model part of the Routing Protocol for low-power and Lossy6

Networks (RPL), popular in wireless sensor networks, and verify it using model checking. We compare our approach with the more7

common simulation approach, and show that analysing the bigraph model often finds more valid routes than simulation (that usually8

returns only a single routing tree even with 500 simulations), and that it has comparable performance. The model is open to extension,9

with less implementation effort than simulation, and we show this through two examples: a security attack and physical link drops.10

Bigraphs seem a promising approach to protocol design, and this is the first step in promoting their use.11

CCS Concepts: • Networks → Protocol correctness; • Computing methodologies → Modelling and simulation; • Theory of12

computation→ Models of computation; • Software and its engineering → Model checking.13

Additional Key Words and Phrases: Bigraphs, wireless sensor networks, routing, formal methods, model checking14

ACM Reference Format:15

Maram Albalwe, Blair Archibald, and Michele Sevegnani. 2024. Modelling and Analysing Routing Protocols Diagrammatically with16

Bigraphs. 1, 1 (July 2024), 27 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn17

1 INTRODUCTION18

The Internet of Things relies on interconnected devices, e.g. sensors and actuators, which is enabled through an array19

of networking protocols, often designed for specific device types, e.g. low-power devices. With this dependence on20

networking, it is essential the networking protocols underpinning these applications are reliable.21

Formal methods are one approach to provide guarantees about reliability. While formal methods, and model checking22

in particular, have been widely used for rigorous system analysis both in industry and academia—thanks to a large23

number of tools [23, 16, 31, 19], variety of modelling languages [12], support for exhaustive analysis, and the existence24

of specialised tools for security analysis [30, 41]—they are often seen as difficult to use and uptake is slow. The trade-offs25

between the benefits of formal methods in guaranteeing behaviour and their usability is a pressing question in protocol26

Authors’ addresses: Maram Albalwe, m.albalwe.1@research.gla.ac.uk, University of Glasgow, 18 Lilybank Gardens, Glasgow, Scotland, UK, G12 8RZ and

University of Tabuk, P.O.Box 741, Tabuk, Tabuk, Saudi Arabia, 71491; Blair Archibald, University of Glasgow, 18 Lilybank Gardens, Glasgow, UK, G12 8RZ,

blair.archibald@glasgow.ac.uk; Michele Sevegnani, University of Glasgow, 18 Lilybank Gardens, Glasgow, UK, G12 8RZ, michele.sevegnani@glasgow.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0009-0007-4785-9479
HTTPS://ORCID.ORG/0000-0003-3699-6658
HTTPS://ORCID.ORG/0000-0001-6773-9481
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0009-0007-4785-9479
https://orcid.org/0000-0003-3699-6658
https://orcid.org/0000-0001-6773-9481


2 Albalwe, et al.

design, with the Internet Engineering Task Force (IETF) recently proposing their Usable Formal Methods Research27

Group1.28

We believe diagrammatic modelling techniques, i.e. Milner’s Bigraphs, can be practically applied to protocol design29

to usability without sacrificing rigour.30

We show that Bigraphs can be employed to model and verify Wireless Sensor Networks (WSN) routing protocols,31

and also show how user-defined rules make it easy to experiment with the protocol, e.g. adding in new rules to model32

security aspects or wireless links instability. We showcase our approach by modelling and analysing RPL [3]—Routing33

Protocol for Low-Power and Lossy Networks as an example while we expect similar approaches to apply to a much34

wider range of network protocols as can be seen by similar models for the 802.11 MAC protocol [14], and other WSN35

topology protocols [7].36

Bigraphs have been successfully used in modelling and verifying different systems such as ubiquitous systems [10],37

cyber-security in smart buildings [50], and biological processes [29]. A key feature of bigraphs is their diagrammatic38

notation that opens up formal modelling to a wider audience, including protocol designers who may be unfamiliar39

with the complex notations often found in formal modelling tools. Bigraphs also benefit from user-defined rewriting40

rules (as opposed to fixed rules in models like the 𝜋-calculus [36]) and the ability to quickly experiment with different41

initial states, e.g. by drawing the sensor network topology. As a graph-rewriting formalism based on relating entities42

both spatially, through nesting, and with non-local connectivity, bigraphs can mirror sensor networks that also have a43

strong spatial component, e.g. the radio range determining the physical neighbour set, and virtual connectivity, e.g.44

determining multi-hop paths from a sensor to a base station [7].45

Wireless Sensor Networks (WSN) [28] use multiple sensors to gather a large amount of data over multi-hop points46

than a single sensor can. Low-cost sensors often have low-powered transmitters that are out of range of an internet47

gateway node meaning multi-hop routing—where data is sent from sensors to other sensors close to the gateway—is48

a necessity for most WSN applications. A key goal of WSN routing is to build an efficient route of communication49

between the gateway and each sensor to allow reliable data transfer. Given the resource-constrained nature of the50

sensors (usually small embedded systems), and the possibility of deploying them at harsh environments, e.g. sensors51

within a volcanic environment where radio transmissions are unreliable [54], sharing information effectively requires52

routing protocols specialised for low-power and lossy networks.53

It essential to prove the protocols are correct, secure, and robust. Current engineering practice mainly focuses on54

evaluating protocols in real embedded devices through experiments within simulation/emulation environments such as55

Cooja [39] or directly on physical testbeds [27]. An advantage of these approaches is that the real implementation of the56

protocol, which may deviate from the protocol specification, is tested. However, these approaches are non-exhaustive57

and cannot make guarantees about protocol behaviour. They are also inflexible when trying to discover the effects of58

protocol changes as this requires potentially complex re-implementation work. Formal, mathematically-based, models59

of protocols can overcome some of these shortcomings by providing exhaustive analysis and proof.60

We make the following research contributions:61

• We show how bigraphs can model RPL’s route construction, and provide an executable specification of the model62

in the BigraphER [44] framework.63

1
https://wiki.ietf.org/en/group/ufm
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Modelling and Analysing Routing Protocols Diagrammatically with Bigraphs 3

• We experimentally compare our bigraphmodel against the RPL-Lite
2
implementation in the Contiki-NG operating64

system [38]. Simulation is performed using the Cooja network simulator. We compare based on the running time65

and number of routes found.66

• Using model checking, we show the RPL specification maintains useful properties, e.g. routes are valid.67

• We discuss how the bigraph approach allows easy extension (i.e. without full implementation effort) by showing68

how to encode malicious attacks and probabilistic topology changes.69

The paper is organised as follows: we give background on RPL and bigraphs in Section 2 and Section 3, respectively.70

We describe our model for RPL in Section 4, and, in Section 5, we validate it against ContikiRPL and a set of logical71

properties through model checking. Extensions of the model are in Section 6, and Section 7 discusses the related work.72

Section 8 concludes the paper and identifies some promising directions for future work.73

2 RPL: ROUTING PROTOCOL FOR LOW-POWER AND LOSSY NETWORKS74

While in-network computing is possible, a common mode of operation for WSNs is to send all data to a special gateway75

node that often has additional capabilities, e.g. long-range radio to upload data to a cloud environment. RPL belongs76

to the family of distance vector routing protocols, i.e. those that use a notion of distance (or distance proxy such as77

latency), to determine the best path for a packet. It is defined by IETF RFC 6550 [3] and implemented for many WSN78

toolkits, most notably Contiki-NG.79

Given a physical network topology, e.g. sensor positions and radio ranges, and a predefined root node, usually80

a gateway between the sensor nodes and the Internet, RPL builds a Destination Oriented Directed Acyclic Graph81

(DODAG) that defines a (directed) routing path from the root to each reachable node. To avoid and detect loops in a82

routing path, RPL assigns each node with a rank that represents the distance from the root.83

Computation of a node rank depends on the objective function employed by the RPL instance. RPL defines four84

control messages:85

• DIS (DODAG Information Solicitation): allows a node to request information about a nearby RPL DODAG, e.g. to86

determine if it might want to join.87

• DIO (DODAG Information Object): transmits information, e.g. rank, to other nodes regardless if they have already88

joined the DODAG.89

• DAO (Destination Advertisement Object): is used by nodes joining (or changing position within) the DODAG to90

update other nodes with new routing information.91

• DAO-ACK (Destination Advertisement Object Acknowledgement): is sent by the root to a joining node that,92

upon receiving it, becomes reachable and can multicast DIOs to other nodes.93

We illustrate the protocol by describing informally the steps required to construct a DODAG. Initially, the root94

multicasts a DIO to advertise the DODAG to any nodes in range. A node that has not already joined the DODAG, on95

receiving the DIO, can join the DODAG by selecting the sender as its preferred parent. If the node is already part of the96

DODAG, it can either ignore the DIO or select the sender as its new preferred parent if that improves on the current97

rank. Upon joining, a node unicasts a DAO message to its (preferred) parent. This DAO is further propagated until it98

reaches the root which replies with a DAO-ACK. After receiving the DAO-ACK, newly joined nodes themselves begin99

multicasting DIOs to allow for more nodes to join the DODAG through the same process. Nodes not yet in the DODAG100

2
https://docs.contiki-ng.org/en/develop/doc/programming/RPL.html
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P_Sensor P_Sensor On Off

Physical V_Sensor V_Sensor

Virtual

𝑎 𝑏

Fig. 1. Modelling a WSN as a bigraph. Left region is physical perspective and right region is virtual.

may periodically send DIS messages to solicit more DIO messages nodes if required. Eventually, all reachable nodes will101

be part of the DODAG and the initial route construction is complete.102

In this work, we consider the non-storing mode of RPL, known as RPL-Lite, i.e. routing tables are only maintained at103

the root and routing information is included in downwards packets
3
. Furthermore, we only focus on the construction104

of the RPL DODAG, assume a single RPL instance, and use objective function OF0 [49] that assigns uniform weights to105

links. We will use the abbreviation DAG instead of DODAG for the rest of the paper.106

3 BIGRAPHS107

Bigraphs are a graph-based modelling formalism, introduced by Milner, to model systems that evolve in both time108

and space [35]. Bigraphs consists of a pair of relations over the same set of entities: a place graph and a link graph.109

The place graph models the spatial structure, e.g. a sensor in a specific room, while the link graph describes non-local110

connections, e.g. communication over a network, regardless of physical location.111

We introduce bigraphs by showing a simple model of a sensor network in Fig. 1. Entities, e.g. P_Sensor, V_Sensor, are112

user-defined and may be related spatially through nesting e.g. Physical entity contains P_Sensor entity, or (non-local)113

hyperlinks, e.g. connecting a P_Sensor entity to a V_Sensor entity. As links are hyperlinks they connect 1-to-𝑛 rather114

than more traditional 1-to-1 links. Each entity has fixed arity that determines the number of (green) links it must have115

e.g. each P_sensor has two links. Links must always be present but might not connect anywhere (a 1-to-0 link) as shown116

by an orthogonal line at the end of a link. Links may be named, in which case they are open to extension, e.g. might117

connect elsewhere in some larger model.118

Dashed rectangles, called regions, represent adjacent parts of a system. We use these here to form perspectives:119

different views on the same system. In this case, we decouple the physical aspects of sensors, e.g. radio links, to virtual120

elements, e.g. sensor status. Links between the perspectives allow us to track relationships between entities in different121

perspectives, e.g. each physical sensor P_sensor connects to a virtual sensor V_sensor. This multi-perspective approach122

has been used to good effect to describe mixed reality games [10] and large scale sensor networks [46].123

Bigraphs permit an equivalent
4
algebraic and diagrammatic notation. For example, the bigraph in Fig. 1 can be124

expressed as125

Physical.(/𝑐 P_Sensor𝑐𝑎 | /𝑐 P_sensor𝑐𝑏 ) ∥ Virtual.(V_Sensor𝑎 .On | V_Sensor𝑏 .Off)

3
An alternative (storing mode) is to have each sensor maintain a routing table.

4
The equivalence means we lose nothing from the theory by using diagrams over algebra, so this is not a simplification of what a modeller would write.
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Table 1. Equivalent diagrammatic and algebraic definition of some example bigraphs.

Operation Diagrammatic Algebraic

Parallel product P_Sensor V_Sensor

𝑎

/𝑐 P_Sensor𝑐𝑎 ∥ V_Sensor𝑎

Merge product P_Sensor P_Sensor

𝑎 𝑏

/𝑐 P_Sensor𝑐𝑎 | /𝑐 P_Sensor𝑐𝑏

Nesting
On

V_Sensor

𝑎

V_Sensor𝑎 .On

Name closure P_Sensor

𝑎

/𝑐 P_Sensor𝑐𝑎

P_Sensor P_Sensor

Off On

V_Sensor V_Sensor

𝑦 𝑥

P_Sensor P_Sensor

On On

V_Sensor V_Sensor

𝑦 𝑥

▶

if ⟨−,
Charging

, ↓⟩

Fig. 2. Example reaction rule: physically connect and turn on sensors that have finished charging.

The equivalence between the algebraic definition of the components and operations used in the example and their126

diagram form is shown in Table 1. We use the diagrammatic notation in this work as it is easier to understand for127

non-experts.128

For space, we do not give a full overview of Bigraphs here, and refer the reader to [35] for full details. Many variants129

of bigraphs have been developed, and throughout this paper we use bigraphs to mean conditional bigraphs [5].130

3.1 Bigraphical Reactive Systems (BRSs)131

Bigraphs specify a system at a particular point in time. To encode dynamics we can equip bigraphs with a set of reaction132

rules 𝐿 ▶ 𝑅 that states that we can evolve a bigraph by replacing matches of a bigraph 𝐿 with 𝑅. A set of all bigraphs133

closed under the set of rules is known as a bigraphical reactive system (BRS).134

An example reaction rule is in Fig. 2 and shows a scenario where two P_Sensor entities can be linked when one135

sensor is Off and the other On. To allow rewrites to apply in a wide range of circumstances, we can use special entities136

known as sites and shown as the filled dashed grey rectangles. Sites represent elements of the bigraph that have been137

abstracted away, that is, an unspecified bigraph is allowed to exist there (including the empty bigraphs). This means138

this single rule matches the case when the V_Sensor might include other information like a sensor identifier. As there is139

Manuscript submitted to ACM
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0 1

NInfo
2

Info
V_Sensor

V_Sensor

𝑥 𝑦

0 1 0 2

NInfoInfo

V_SensorV_Sensor

𝑥 𝑦

▶

Fig. 3. Instantiation map specified by the numbering on sites. Info is copied to the second sensor NInfo.

no site on the rightmost virtual sensor this is not allowed to nest any other nodes or there is no valid match. Named140

links act likewise: if there is a name then the link might (or might not) link elsewhere, if not then it can only link the141

entities specified.142

In general a rule can apply whenever there is an appropriate match. However, to gain more control over rule143

application, various extensions to BRSs have been proposed including rule priorities—where for two rule sets {r1, r2} <144

{r3} none of r1, r2 apply unless there is nomatch for r3—and conditional rewriting that allows rule application only when145

a given bigraph does/does not appear within a site. For example in Fig. 2 we have the extra condition if ⟨−,
Charging

, ↓⟩146

that states we do not (−) allow the bigraphs with a single Charging entity in (any of) the sites (↓)5.147

To aid modelling, we allow entities and rules to be parameterised. This allows generating entities/rules over a set of148

pre-defined values. For example we can introduce an entity Rank(𝑛) representing a sensors rank. This is syntactic sugar149

for Rank(1), Rank(2), . . . . Rules instantiated by a parameter assign that parameter value to entities within the rule.150

We use instantiation maps to assist in manipulating the content of sites during the application of reaction rules151

allowing parts of a bigraph to be duplicated or discarded. An example instantion map is in Fig. 3 and shown as numbers152

inside sites. Sites on the right side of a rule copy the bigraph from the similarly numbered site on the left. For example,153

this rule copies any bigraph within the Info entity on the left to the NInfo (neighbour information) entity on the right154

indicated by (site 0) in both sides. If there is no site on the right corresponding to a site on the left, then the contents are155

deleted.156

We employ BigraphER [44], an open-source language and toolkit for bigraphs verification. BigraphER supports rules157

with instantiation maps, rule priorities, and parameterised entities and rules. Model checking is supported by generating158

the full transition system that can then be verified by existing tools such as PRISM [31], allowing, for example, temporal159

logic properties to be checked. To make it easier to write properties, BigraphER allows states to be labelled using160

bigraph patterns [10] that can label a state whenever a specific bigraph occurs in it.161

4 MODELLING RPL WITH BIGRAPHS162

In this section, we show how to model the RPL-Lite protocol as a BRS. We begin by describing how we model a given163

topology and then show how RPL constructs a DAG by adding dynamics.164

4.1 Network Topology165

There are two communication topologies present in an RPL-enabled WSN. The first is based on the physical capabilities166

of the nodes, i.e. the radio range, that determines which nodes may physically communicate. RPL then overlays a167

routing topology to provide unicast communication between nodes. That is, although many nodes might be able to168

communicate physically, RPL is selecting which should communicate.169

5
More generally we can write a context condition to force something to appear anywhere not in a site or match, but we do not use this here.

Manuscript submitted to ACM
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R

A B

C

(a)

PLink PLink PLink PLink PLink PLink

DIOVal(1)

Rank

Val(1) Val(0)PrefPrnt PrefPrntID(C)
SendNode Rank Rank

PNode

ID(R)ID(B)ID(A)

Node

PNode PNode PNode

Node Node

Physical

Routing

(b)

Fig. 4. Example WSN topology (a) and corresponding bigraph representation (b). The partial RPL DAG construction is shown in the
physical and routing perspectives.

4.1.1 Example WSN Topology. We use perspectives to capture these two topologies as shown in Fig. 4b. This is a170

partially constructed DAG indicated by a preferred parent (PrefPrnt) and Rank in Node A and Node B (where nodes are171

identified by nesting an ID entity). A communication has also started between Node B which is sending a DIO to Node172

C. Fig. 4a shows a corresponding WSN with four sensors: three connected physically and an additional sensor in range173

of sensor B only. Black links indicate connected nodes while the grey one is for nodes that are in range but not yet174

connected. We indicate the root node in red.175

4.1.2 Physical Perspective. Models the nodes (PNode) and their physical neighbourhoods, i.e. which nodes are in radio176

range. As we do not model Euclidean distance, nodes are in-range whenever they are connected by linked PLink entities177

(drawn as small black circles). For clarity, we assume radio ranges are symmetric so pairs of nodes are either in-range178

or not. The model could be extended to support non-symmetric ranges through additional links, e.g. PLinkOut/PLinkIn.179

We give radio links specific states that change as the model evolves. There are two link states: Idle in blue, and In-use in180

red. Currently we assume the physical topology is fixed, that is, nodes do not move and the radio ranges do not change181

due to environmental conditions etc. This could be modelled in future by changing the linking within the perspective182

(as discussed in Section 6).183

4.1.3 Routing Perspective. Contains information about all nodes (Node) and their RPL routing status. Each node has a184

unique identifier (a parameterised ID entity) and can be assigned a rank (Rank). We identify the gateway/root node as185

the node with rank 0. Each node, except the root, contains a PrefPrnt entity linked to its preferred parent, for example,186

Node A and B link to Node R as their parent. Each Node in the routing perspective is connected to the corresponding187

Manuscript submitted to ACM
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GenDIO
0 1

Rank

Node

𝑛

0 0 1

Rank Rank

DIO

Send

Node

𝑛

▶

Fig. 5. Reaction rule generateDIO.

PNode in the physical perspective via a green link. Control messages are represented by entities DIO and DAO. They188

are contained within Send or Receive entities in each node to indicate the transmission direction. In practice, more189

details of the sensors are stored, but we have abstracted these with sites for clarity. These will be introduced as required190

in future sections.191

4.2 Modelling RPL Dynamics192

We now show the reaction rules required to model the RPL protocol dynamics, i.e.messages between sensors, and sensor193

local updates. We use the RPL process described in Section 2 as our starting point with the following assumptions:194

(1) We only model downward connection where newly joined nodes multicast DIOs to their neighbours.195

We do not model DIS messages, that let a node request information upwards, as these require clocks, e.g. after 𝑛196

seconds try another DIS.197

(2) We assume nodes receive one DIO at a time, i.e. that the processing time is short enough relative to message198

transmission time, and assume no packet drops in the network. Note that, because we do full model checking, all199

possible execution traces, i.e. message orders, are considered even if two or more messages appear at the same200

time.201

(3) No node failures occur during DAG construction.202

These assumptions keep the model small to allow efficient verification, and to ensure it is succinct enough to be203

described in the paper, but have no effects on the construction of valid DAGs. We can remove these assumptions by204

adding additional reaction rules like we show in Section 6. Checking of specific timings (rather than the symbolic version205

that captures all interleavings that we show here) would require extensions to the bigraph theory, i.e. introducing206

timers/real-time bigraphs.207

Our model consists of 16 reaction rules (including two parameterised rules) encoding the four main steps of the208

RPL DAG constructions. To keep accurate to the distributed nature of the network, rules rely on updates based on209

local information only. We give the diagrammatic versions of the reaction rules here, and the algebraic forms are in210

Appendix A.211

Step 1: Generating DIOs (Fig. 5). The first step is that a new node generates a DIO message to be sent to all its physical212

neighbours. We use a special token genDIO within a Node to determine when a new DIO should be generated and213

this is initialised on the root. Rule generateDIO converts this to a DIO message represented by a DIO entity within214

a Send entity. The DIO message contains two bits of information: a link to the sending node (𝑛) and a copy (via an215

Manuscript submitted to ACM
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0 1 2

3 4

Idle
5

PLink

Node DIO

PNode
PLink

Send

PNode

Node

𝑛1 𝑛 𝑛2

1 0 1 2

3 4

In-use
5

PLink

DIO DIO

PNode
PLink

Receive Send

PNode

Node Node

𝑛 𝑛1 𝑛2

▶

(a) sendDIO

0 1 2

PNodeDIO

Send

Node

𝑛

1

ClearMulticast
2

Node
PNode

𝑛

▶

if ⟨−, Idle
, ↓⟩

(b) sendDIO_Done

ClearMulticast In-use

PLink

PNode

𝑛 𝑥

ClearMulticast Idle

PLink

PNode

𝑛 𝑥

▶

(c) clearMulticast

ClearMulticast

PNode

𝑛

PNode

𝑛

▶

if ⟨−, In-use
, ↓⟩

(d) clearMulticastEnd

Fig. 6. Reaction rules for DIO multicasting process.

instantiation map) of the Rank at the time the message was sent6. The link to the sending node allows it to be identified,216

without needing to explicitly track IP addresses (as would be sent in an implementation).217

6
We cannot rely on matching via the link to the sender here, as the rank might update after the message is sent but before it is received.
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Step 2: Multicasting DIOs (Fig. 6). Once we have a message to send, the multicast process can start. As we want218

to send a message to all physical neighbours at once, we utilise a multi-step process. First, rule sendDIO (Fig. 6a)219

determines if there is a physical neighbour that has not yet received the DIO, i.e. its link is Idle (blue). If so, it performs220

the send by coping the DIO message to the neighbour Node, and tags this link as In-use (red) so we do not send221

twice. The instantiation map allows this rule to be used regardless of the contents of the DIO, e.g. the specific rank222

being sent. A second rule sendDIO_Done (Fig. 6b) removes the Send entity and its content once we detect all sends223

have been completed. This is achieved by specifying a condition checking that there are no Idle physical links. Rule224

clearMulticast (Fig. 6c) reverts the link used for multicasting into its initial state (Idle) while rule clearMulticastEnd225

(Fig. 6d) removes ClearMulticast from PNode entities with Idle links, thus enabling other DIO messages to be sent.226

An optimisation is possible using instantaneous rules—an advanced feature of BigraphER—that allow us to apply a227

set of rules (to a fix-point) as if it was a single rule application. That is, we perform the entire multicasting process as a228

single step to mimic the physical (radio broadcast) nature.229

When two or more nodes have messages to multicast, this will happen around the same time in the model. This is230

based on the assumption that processing messages (see step 3) is significantly faster than message sending so processing231

occurs with higher priority in the model leaving message sending rules to be handled together.232

Step 3: Handling the DIO (Fig. 7). Once a DIO is received, nodes determine how to handle the message. There are233

three cases for the receiver: (1) not yet joined, (2) joined and the sender has rank 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 or 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 the receiver,234

and (3) joined and the sender has rank 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 the receiver.235

Rule handleDIONotJoined (Fig. 7a) handles case (1) knowing the receiver has not already joined by the absence of a236

Rank (handled in the condition). When the rule applies, the receiver requests the Rank to be the sender rank + 1
7
, via237

IncRank, and sets the preferred parent to be the sender (identified by link 𝑝). Finally, a DAO message is scheduled to be238

sent to the sender by creating a DAO entity linked to 𝑝 and placing it inside a Send entity.239

To allow rank comparisons to be generic, and as bigraphs have no built-in mathematical comparisons, we use the240

rules in Fig. 8 to perform rank comparisons and increments where 𝑛 is the current rank for the receiver and 𝑚 is241

the potential new rank. The comparison functions follow the standard recursive definition of less-than via repeated242

subtraction. We use True and False entities (Fig. 8c and Fig. 8d) as flags for the comparison result to be used in the next243

step; i.e. True indicates that no rank update is required.244

Rule handleDIOJoined (Fig. 7b) handles case (2) when the node is already present in the DAG (i.e. it has a rank).245

Since sender has rank equal to or bigger than the received rank then rule handleDIOLT (Fig. 7c) applies and the receiver246

drops the message (and cleans up the comparison) as it is already in an equal or a better position than if the sender was247

made a new parent. If the sender has rank less than the receiver (case 3), then handleDIOGT (Fig. 7d) applies to allow248

the receiver to set a new preferred parent and update to this improved rank.249

Step 4: Sending the DAO (Fig. 9). Nodes register themselves by sending a DAO to the root. This is achieved by first250

applying the the rule sendDAO (Fig. 9a). If the receiving node is not the root, rule sendDAOUpParent is then applied to251

pass the DAO further up towards the root through the node’s preferred parents set (Fig. 9b). clearDAO (Fig. 9c) then252

clears the DAO once it reaches the root. Once the DAO is initially sent, a GenDIO is generated so the receiver will253

generate new DIO messages (continuing from Step 1).254

7
As required by OF0.
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(c) handleDIOLT
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▶

(d) handleDIOGT

Fig. 7. Reaction rules for handling the DIO.

In practice this DIO would only be generated once a DAO-ACK is received from the root node. Since we are not255

modelling link failure, DAO-ACKs will always be successful so we skip the steps to send them. Modelling DAO-ACKs256

would be similar to sendDAOUpParent if required in future.257
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Fig. 8. Reaction rules for rank calculation and comparison.
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▶
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DAO
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Node

𝑛1 𝑛2
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𝑛1 𝑛2

▶

(c) clearDAO

Fig. 9. Reaction rules for sending the DAO.

Once all nodes have joined and fixed their ranks no new DIO messages will be generated. At this stage the DAG258

construction is complete and all nodes will have joined on a minimum rank possible. The full model including the259

priorities classes employed to enforce the desired sequence of execution is available at [43].260
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5 MODEL VALIDATION AND COMPARISON TO SIMULATION APPROACHES261

We compare our model against RPL-Lite, the default Contiki-NG’s RPL implementation. We use Cooja, which is a262

popular emulator for IEEE 802.15.4 networks with devices running Contiki-based firmware, to simulate the radio263

environment.264

Our modelling assumptions (listed in Section 4.2) are appropriate when comparing against RPL-Lite as:265

(1) The timing aspects (i.e. clocks) of RPL-Lite are not considered as they do not play any role in the construction of266

the initial DAG which is the focus of this work.267

(2) Nodes in Cooja can send DIS messages periodically which is not the case in our model. DIS messages are mainly268

used for DAG repair which we do not currently focus on. The presence of DIS does not enable different DAGs to269

be constructed than DIO only.270

(3) Parent selection in Cooja uses multiple probings to test link quality before selecting a parent (if there are271

multiple similarly ranked options). As the bigraph model considers all orderings, we will get all possible parents272

regardless of link quality or the metric employed. One way to view this is that we consider all possible link273

quality alternatives.274

To formally check we get correct DAGs, we specify a set of properties to verify our RPL model through PRISM, an275

open-source automated verification tool providing model checking for different types of probabilistic models such as276

Discrete Time Markov Chains (DTMCs). Although our model is non-probabilistic, it is still supported by PRISM by277

treating the transition systems generated by BigraphER as a DTMC with uniform weight on transitions and utilising278

only the non-probabilistic fragment of the property logic, e.g. Computation Tree Logic (CTL) [17]. The choice of PRISM279

is motivated by technical reasons, i.e. BigraphER currently only supports PRISM output format, but could also be a280

benefit in future to allow probabilistic modelling within RPL and other protocols, e.g. assigning probabilities/rates that281

some link fails (as shown in Section 6).282

We verify RPL features using properties expressed in CTL. CTL uses quantifiers over paths, A (for all) and E (there283

exists), and path formulae, F (eventually) and X (next). For example, E [ F𝜙 ] means: there exists a path that eventually284

reaches a state satisfying 𝜙 (in our case, 𝜙 is specified using a bigraph pattern).285

1 Topology

Generator

2 Cooja

(Headless mode)

3 NetworkX

DAG

Comparator

Properties

2 BigraphER

4 PRISM

D
A
G
s

D
A
G
s

Graph features
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Transition

System

Fig. 10. Experiment approach.
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Fig. 11. Example physical topology (a) and all valid RPL DAGs (b)-(e).

5.1 Experiment Setup286

To validate our model and allow empirical comparisons with Cooja, we experiment with 100 randomly generated287

network topologies with between 7 and 9 nodes. Each node is assigned a (uniform) random physical 2D-position (as288

needed by Cooja), and links for the bigraph models are determined using the position and the wireless transmission289

range. We only generate fully connected topologies i.e. there will always be a path to all nodes, with no self-loops. Code290

to generate the topologies and to reproduce the experiments is available online [43]. Fig. 10 shows the experiment flow291

for each topology, an example of a five node topology is shown in Fig. 11a. For each topology we do the following:292

(1) Encode the generated topology for both Cooja (.csc file) and BigraphER (.big file) as described in Section 4.1.293

(2) Run the model and simulation and extract the DAGs constructed by both BigraphER and Cooja. For each we294

check if the two DAG sets are the same (often Cooja misses possible DAGs which BigraphER finds as discussed in295

Section 5.2). The DAGs generated by BigraphER are obtained by parsing all the deadlock states in the transition296

system while those found by Cooja are constructed by parsing each simulation log file.297

(3) We use NetworkX
8
, a Python package for the creation, manipulation, and analysis of graphs, to generate a list of298

predefined properties (e.g. the generated DAGs have no cycles) for the validation of the bigraph model.299

(4) Verify with PRISM each of the properties in (3) against each DAG constructed by our model. The model checking300

results are saved in a text file. We assume the DAGs found by Cooja are correct therefore we do not validate301

them.302

We performed our experiments using GNU Parallel [47] on machines with dual 8-core Intel Xeon E5-2640v2 CPUs303

(2Ghz; no hyper-threading) and 64GB of RAM. We use BigraphER version 2.0.0 and run Cooja on Docker version 24.0.2.304

In Cooja, we use node type Z1 with UDP-server running on the root and UDP-client on the other nodes. We set the305

transmission range to 100 m, the interference range to 140 m, and use OF0 as the Objective Function. We generate306

random seeds for each simulation which then runs at 1000x simulation speed and terminates when the simulator307

constructs a DAG comprising all 𝑛 nodes.308

8
https://networkx.org/

Manuscript submitted to ACM

https://networkx.org/


Modelling and Analysing Routing Protocols Diagrammatically with Bigraphs 15

RPL DAG instances

0

2

4

6

8

10

12

14

Bi
gr

ap
hE

R 
DA

GS
 re

l. 
Co

oj
a

Fig. 12. Number of RPL DAGs found with BigraphER and Cooja: above 0 implies BigraphER found𝑛 more DAGs than Cooja. Topologies
where BigraphER and Cooja agree are unshown (39% of cases).

5.2 Comparing Bigraphs to Cooja309

In this section we use our experimental setup to compare the full model checking approach of bigraphs to the simulation310

approach of Cooja. We use a single run of BigraphER (since this is enough to discover all possible DAGs) and 500 runs311

of Cooja for each random topology.312

5.2.1 Comparing DAGs Found. A key benefit of the model checking approach of bigraphs is that a single run will313

find all valid RPL DAGs, while a single run of Cooja will find only one. 100 topologies were sufficient to explore our314

hypothesis that the formal approach would find more valid DAGs than Cooja and provide consistent outcomes. More315

topologies can be explored using our tooling [43]. Fig. 12 shows the difference in the number of DAGs found between316

BigraphER and Cooja (after 500 simulation). BigraphER finds more DAGs than Cooja in more than half of all cases317

(59/100), and in some instances these can be quite startling: in one instance BigraphER detecting 14 more valid DAGs318

than Cooja. Even increasing this case to 1000 runs finds no more DAGs.319

There are two cases where BigraphER times out (> 24 hours runtime). Since we do not currently support partial320

output that shows us how many DAGs are discovered before this happens, we utilise BigraphER simulation to support321

our analysis. In one case, BigraphER finds all possible DAGs i.e. 4 DAGs in 9 runs while Cooja finds only 1 in 500 runs.322

In the other case, there is only one possible DAG that both BigraphER and Cooja find. We chose 500 simulation runs in323

the hope Cooja had enough time to find interesting RPL DAGs.324

In Fig. 13 we show, for all instances where 3 or 4 RPL DAGs were found, how likely each different DAG was to be325

found. These results show Cooja usually prefers a single RPL DAG that it finds in more than 70% of runs; often in 80%326

of runs. Finding a third or fourth DAG happens in only a very small number of cases (a fifth DAG was found in one327

instance only) and it is very sensitive to the number of simulations performed. That is, truly exploring RPL DAGs with328

Cooja is likely to require a large amount of computational resource if we want to be confident of finding all cases.329

Bigraphs do not have this limitation.330
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Fig. 13. Distribution of RPL DAGs within Cooja simulations (for the 16 instances that find 3 or 4 DAGs). Colours indicate the different
DAGs found; i.e. red colour indicates the most DAG repeatedly found in 500 simulations. x-labels show instances where more DAGs
were possible, but never discovered even after 500 simulations.

The differences between Cooja and BigraphER DAGs has implications for future protocol analysis: it is clear neither331

is sufficient on its own. Full model checking can show many more cases to increase confidence the protocols work332

in a much wider range of environments, but in a small number of instances state space explosion issues may make it333

impractical to use and simulation can still provide insights in these cases.334

5.2.2 Running Times. We have shown BigraphER finds more valid RPL DAGs than Cooja in most cases. As Fig. 12335

indicates, Cooja finds the same number of valid RPL DAGs as BigraphER does in only 39% of cases, and this highlights336

the issues of simulation missing outputs when analysing protocols.337

There are trade-offs in the time required to discover all DAGs (bigraphs) instead of a simulated subset of DAGs338

(Cooja). Fig. 14 shows the distribution of BigraphER and Cooja runtimes. BigraphER runtimes are clustered towards339

the left, showing that in most cases (83/100) we can find all RPL DAGs in less than 60 minutes. Of the remaining340

instances, most complete within 180 minutes (3 hours), but 2 take longer than 1 day to compute (so time out). Due to341

the combinatorial nature of these problems it is not possible to predict a-priori how long a particular run will take.342

Cooja runtimes are much less spread, and take a mean runtime (for 500 simulations) of 154 minutes (2.5 hours).343

Given the increased number of DAGs found, and the fact BigraphER usually manages to find these in less than 1 hour,344

the modelling approach seems to be a valid alternative to Cooja, but, as we mentioned, we believe the best approach is345

for both techniques to be used in tandem.346

5.3 Verification347

We consider two approaches to verification: model checking (over a given topology) and static analysis of the reaction348

rules to prove properties hold regardless of the specific topology. Model checking is useful for small toplogies due to the349

state-space explosion issue which is common in formal verification but benefits from the automated nature. In future,350

the support for probabilistic reasoning can also be utilised, e.g. to model real link failure rates.351

Manuscript submitted to ACM



Modelling and Analysing Routing Protocols Diagrammatically with Bigraphs 17

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540Timeout
(>24h)

Runtime (mins)

0

10

20

30

40

50

60

Fr
eq

ue
nc

y
BigraphER
Cooja (500 runs)

Fig. 14. Distribution of BigraphER and Cooja runtimes. Timeout is 24 hours.

5.3.1 Model checking. To check all the generated DAGs are valid, we verify the bigraph model using the PRISM model352

checker. We use NetworkX to assist in generating a set of properties to validate the model. This because the current353

definition of bigraph patterns does not include spatial modalities like for instance R (reachable from) in SLCS [15, 32]354

that would allow reasoning on path properties on the place graph. Here, we employ NetworkX to automatically extract355

the required graph properties (e.g. the shortest path between two nodes) from each DAG constructed by the bigraph356

model and include them into a set of CTL formulae in PRISM format. In essence, this allows us to check that our local357

protocol creates correct global DAGs.358

We check the following properties for each run. These are temporal properties so these check that they hold for all359

possible paths in the transition system. In the following we use 𝑛 to indicate the number of nodes in a topology.360

Property 1: All nodes eventually join the RPL DAG. As we assume fully connected physical topologies, RPL should361

eventually find a path between the root and all nodes. We check this by assigning a label joined𝑖 whenever a node 𝑖 is362

assigned a rank and so is part of the DAG (Fig. 15a).363

To check all nodes eventually join, we use the following family (i.e. one property per 𝑖9) of properties:364

∀𝑖 . A [ F joined𝑖 ] where 1 ≤ 𝑖 ≤ 𝑛 (1)

This states there is always a path such that node 𝑖 eventually joins.365

Property 2: Nodes join with the optimal rank. RPL is designed to find optimal routes based on minimising the objective366

function. In general there may be many optimal routes, but they will always lead to a node having the same rank, e.g. in367

Fig. 11b, and Fig. 11c node 4 will always eventually have rank 2 even though there are (at least) two different valid368

routes to it. Here we check nodes eventually join on this optimal rank.369

To write this property, we get the length of the shortest path from each node 𝑖 to the root with NetworkX’s function370

𝑠𝑝 (𝑖), and use 𝑟 = 𝑠𝑝 (𝑖) to denote the rank a node 𝑖 would be assigned on this path. We also add a label rank𝑖,𝑟 that371

occurs whenever a node 𝑖 is assigned rank 𝑟 (Fig. 15b).372

9
To ensure we can enumerate these properties we ensure 𝑖 etc. is drawn from a finite set of identifiers.
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(c) multijoin: a node joins at least twice. This should never
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Fig. 15. Bigraphs predicates to check RPL properties.

To check each node joins with optimal rank we then use the (family of) property:373

∀𝑖 .A
[
F rank𝑖,𝑟

]
where 1 ≤ 𝑖 ≤ 𝑛, 𝑟 = 𝑠𝑝 (𝑖) (2)

As this checks all paths, this works even if a node temporarily joins with the “wrong” rank, e.g. if it has found a374

route, but not yet the optimal route.375

Property 3: RPL DAG is cycle-free. To ensure messages do not get stuck in infinite cycles, we want to check the DAG376

create by RPL is always actually acyclic. The mechanism RPL uses to achieve this is the ranks, and we can guarantee377

cycle-freedom by ensuring nodes only ever join on a single rank (else a node could be a descendent of itself).378

We do this using a labelling multijoin that matches using the bigraph shown in Fig. 15c, i.e. two ranks and anything379

else. We can then check this never occurs:380

A [G¬multijoin ] (3)

5.3.2 Static analysis. While the model checking approach is useful as it can automatically find property violations,381

to show properties of more general topologies it is possible to use a (non-automated) static analysis approach. Our382

strategy is to show that, regardless of the specific topology, the following properties must hold under application of383

all possible (and applicable) reaction rules. Proper execution of the rules is guaranteed by using priority classes that384

provide an ordering on the rules. We use an inductive argument to prove the first property and invariant reasoning for385

the second one. In both cases we assume a connected topology.386

Property 4: All nodes eventually join the RPL DAG. Note this was proved for a given topology with model checking387

in Property 1.388

For the base case, we show that any child of the root that is not already in the DAG, eventually joins it, i.e. the389

child node gets a rank. The only applicable rule is generateDIO as, by construction, the only node with a GenDIO390

is initially the root. This will introduce a DIO in the root enabling sendDIO, thus triggering the multicast process391
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Fig. 16. Stochastic reaction rule dropLink with rate 𝜌 .

described in Fig. 6 terminating with an application of rule clearMulticastEnd. Although different interleavings are392

possible as children can be processed in different order, this step of rewriting is confluent. Since we assume the children393

were not already in the DAG, the only applicable rule is now handleDIONotjoined followed by incRank(0). Different394

interleavings of these two rewriting steps are possible, but eventually all the children will have a Rank. That allows395

sendDAO to be applied, thus introducing a Joined entity in every child.396

For the inductive step, it is sufficient to show that any node that has a parent in the DAG but is not already in the397

DAG, eventually joins it. Any parent already in the DAG acts as the root in the base case and the same sequence of398

rewriting can be applied with two differences:399

• other rules from Fig. 7 (DIO handling) and Fig. 8 (rank computations) can be interleaved as the parent node can400

also transmit to connected nodes already in the DAG;401

• rule incRank(𝑛) with 𝑛 > 0 is applied for new nodes.402

Property 5: RPL DAG is cycle-free. This is the static equivalent of Property 3. Since by construction, in any initial403

state only the root has one Rank and pattern multijoin in Fig. 15c never occurs in the right-hand side of any reaction404

rule in our model, then we can never reach a state in which two Rank entities are within a Node at the same level of405

nesting.406

6 RPL MODEL EXTENSION407

The bigraph model is flexible and open to extension, without requiring full implementation (e.g. of Contiki modules),408

by adding additional reaction rules as required. Our model can be seen as a base of RPL formal description that not409

only models its core element i.e. DAGs but can also be extended to include more functionalities, such as hardware and410

communication failures and RPL attacks. As an example, we show how our model can be extended to include physical411

links drops and a common RPL attack i.e. sinkhole attack [52, 26], but leave a full analysis as future work.412

Physical links drops. We show how to extend the bigraph model to include variability in the radio signal due413

to interference or other environmental factors. We add a stochastic reaction rule [29, 6], as in Fig. 16, that drops the414

physical link between two nodes with rate 𝜌 ∈ R>0. When this event gets triggered, it forces the RPL protocol to415

construct a DAG on a new topology
10
. Quantitative analysis on the extended model can be carried out with PRISM416

by expressing the properties in Section 5.3 using Continuous Stochastic Logic (CSL) [8] instead of CTL. For example,417

property P≥𝑝 [ F joined𝑖 ] holds if node 𝑖 (with 1 ≤ 𝑖 ≤ 𝑛) eventually joins the RPL DAG with probability greater or418

equal than 𝑝 .419

10
This requires modelling trickle-timers for repair steps.
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Fig. 17. Reaction rule sinkholeAttack: node 5 advertises a fake rank.

Sinkhole Attack. In this scenario, a compromised node advertises a fake rank to get neighbours to connect to it.420

We model this by first assuming a reaction rule (not shown) that randomly selects a node, other than the root, to be a421

compromised node. Then use a reaction rule as in Fig. 17 that gives a (randomly selected) node (5 in the figure) rank 1422

and requests for a DIO to be sent by generating a GenDIO in the right-hand side. When other nodes receive the DIO423

they will update their rank accordingly, assuming there is a better path to the root. A second custom rule (not shown)424

for compromised nodes would stop them forwarding messages, i.e. they become sinks. We assume the reaction rule425

sinkholeAttack has the lowest priority so that they only take place once the RPL DAG is constructed. This could also426

be achieved using a second model that takes the result from the RPL construction stage. Ideally, all results would be427

used to ensure full coverage, but this is potentially place to mix simulation and modelling, e.g. let Cooja generate the428

most common topology then exhaustively check security via bigraphs.429

7 RELATEDWORK430

Applying formal approaches to the design and analysis of IoT protocols is an established research field. Like ourselves,431

several works emphasise the significance of utilising protocol analysis for protocol design.432

Glabbeek et al. [22] provide a formal specification of the main functionality of an Ad-hoc On-demand Distance433

Vector (AODV) routing protocol, of which RPL is an instance, using Algebra of Wireless Networks (AWN). Similar to434

our model, the AODV model covers the main components of the protocol while abstracting timing aspects and optional435

features. The work reasons about key features of AODV i.e. loop freedom and route correctness which are used as436

examples. The authors believe, as we do, that other protocol evaluation approaches such as simulation and testbed437

experiments, do not provide a robust answer regarding protocol behaviour due to their limited coverage of network438

scenarios. They claim that using model checkers, such as UPPAAL, ensures discovering potential errors in an early439

protocol development stage. They state that due to the use of English prose in specifying AODV specification, it holds440

ambiguity that may affect implementations and they also suspect that might be the case for other IETF specifications.441

Many secured routing protocols for ad-hoc networks contain design flaws hence they are vulnerable to attacks as442

claimed by [48]. The author uses the deductive proof technique and a backward reachability approach to provide an443

analysis framework to automatically verify the correctness of secure ad-hoc network routing protocols. They develop a444

software tool based on their proposed approach that finds attack scenarios successfully in well-known routing protocols.445

To verify that the synchronisation and dissemination protocol for Wireless Sensor Networks satisfied its require-446

ments, [53] converts the protocol into a logical model to reason about it using PRISM model checker and probabilistic447

computation tree logic (PCTL). The employment of probabilistic models permits the conducting of a quantitative448

analysis of protocols under the effects of environmental changes. Our analysis shows an agreement with what the449

authors conclude which is that the utilising of multiple methods to verify critical IoT systems should be taken into450

account as they usually possess complementary characteristics.451
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Existing modelling tools can be readily applied to protocol analysis. Coloured Petri Nets (CPNs) [25] are used to452

model and verify MQTT protocol logic that covers all three quality of service levels
11

which MQTT provides for453

message delivery [40]. They employ both simulations, to test the appropriate operation of the model, and exhaustive454

validation by exploring the state space. This resulted in finding several issues regarding the implementation of the455

quality of service levels which may lead to interoperability problems between implementations. They manage the state456

space explosion by employing an incremental model checking approach based on the different stages of the MQTT457

protocol. In addition, they impose some assumptions to restrict the state space i.e. assuming a limited number of clients458

and considering a single topic, also bounded packet identifiers.459

The Ad-hoc On-demand Distance Vector (AODV) routing protocol has been modelled [33] using Maude [18], a460

rewriting engine that provides a variety of analysis techniques such as LTL model-checking. The model does not461

consider message collision to avoid the state space explosion. The authors conclude by suggesting that statistical462

model checking techniques and/or abstraction techniques for Mobile ad hoc networks (MANETs) should be developed.463

Alloy [24], a modelling and analysis language, is utilised to model the Android permission protocol and provides a fully464

automatic analysis that leads to identifying three types of vulnerabilities that may permit unauthorised access [9].465

Other approaches rely on verification tools that specifically designed to support protocol design and analysis. For466

example, ProVerif [11] is used to verify proposed enhancements to an existing WSNs authentication protocol that467

suffers from some attacks and violates secrecy and anonymity [55]. However, [21] utilises ProVerif to simulate and468

verify an enhanced symmetric key-based authentication protocol for IoT-based WSNs. Tamarin [34] is another widely469

used tool for protocol verification, especially for security properties. It is employed to verify a proposal for enhancing470

the Reactive-Greedy-Reactive (RGR) routing protocol for Unmanned Aeronautical Ad-hoc Networks (UAANETs) [37].471

In [20], it is used to verify a proposed formal definition of Flow Integrity which the authors applied to industrial systems.472

While these tools do not suffer from state space explosion as they use an abstraction on protocols with unbounded473

sessions, this abstraction may lead to reporting false attacks when analysing protocols with global states. Another474

limitation is that they lose automation as supporting protocols with no limitations of states requires human intervention475

by providing auxiliary lemmata. This can be challenging even for experts [56].476

Despite the popularity of the RPL protocol, there are few works formally modelling it. A recent paper [1] employs477

coloured Petri nets (CPNs) to model the security schemes of a subset of RPL covering single instance and pre-installed478

mode12. The authors model RPL control messages—focusing on the DIO and DAO messages as they enable interaction479

with the other nodes—and evaluate the existing security standards for RPL through state-space analysis. When there is480

no loop in the network topology, their model satisfies the desired state. However, since they do not implement loop481

discovery and inconsistency repair, the model may provide undesired results that are caused by incorrect topologies.482

Regarding bigraphs, they have modelled a wide range of networking protocols and systems. For example, self-adaptive483

Fog systems which consist of distributed micro data-centres in the core network and resource-scarce devices at the484

Edge of the network [42]. A large-scale WSN (up to 200 nodes) is also modelled by bigraphs to enable reasoning about485

the spatial, operational and behavioural aspects. The authors use BigraphER to automate online verification, while486

Cooja is used to generate events and data streams to allow reply of realistic network events and sensed data [46]. The487

structure and behaviour of Wireless Mesh Networks (WMNs) were modelled as bigraphs together with Maude for488

analysis [13]. Bigraphs with sharing [45] allows entities to have multiple parents, and allowed modelling the 802.11489

CSMA/CA RTS/CTS protocol with signal overlaps directly specified [14].490

11
MQTT provides three quality of service levels for delivering messages between clients and servers: at most once, at least once, and exactly once.

12
In this mode, a node should have already installed a cryptographic key on it to be able to join an RPL instance.
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8 CONCLUSION AND FUTUREWORK491

Formal models allow detailed reasoning about the correctness of networking protocols. Milner’s Bigraphs provide492

a modelling framework that is diagrammatic in nature making it usable by a wide audience. We have shown how493

bigraphs, using only 24 entities and 16 reaction rules, can model the initial routing DAG construction step of RPL—a494

popular protocol for wireless sensor networks. A key benefit of the formal approach is that we obtain all possible495

DAG construction paths within a single run, and although this can take a significant time, this allows us to check the496

protocol works in a much larger set of situations (in one case with 14 more DAGs) than is found using emulation in497

Cooja. Bigraphs are open to extension by simply adding a few additional reaction rules, rather than requiring a full498

implementation effort e.g. as would be required to implement changes for Cooja. We have shown how some security499

issues could be modelled, and a future step would be to prove existing mitigation, e.g. local-repair steps, are sufficient500

to counteract attacks including situations where multiple attack types occur in parallel. We believe a mix of both501

formal modelling and emulation/simulation should be considered for future protocol design, with emulation allowing502

experimentation at a much larger scale while modelling is a quick way to try new ideas while giving robust answers,503

e.g. for all possible DAGs. This robustness is essential: even if we only see a DAG a very low percentage of the time, it is504

much better we have tested for it ahead of time than assume it will never happen.505

As future work we wish to explore more details of the RPL protocol, specifically the trickle timing mechanism for506

DAG repair. Currently bigraphs do not directly support timers, however some preliminary work [2] shows it is possible507

to encode digital clocks by leveraging the Markov Decision Processes semantics provided by action bigraphs [6].508

We would also like to drop some assumptions, e.g. that each node receives only one DIO at a time by adding message509

queues, and capture a larger proportion of the RPL protocol.510

We believe that other (distance vector) routing protocols, e.g. Thread [51] or LoRaWAN [4], can be modelled using a511

similar approach by utilising common features between protocols. For example, routing in Thread similarly has routers512

periodically send their routing ‘costs’ to all other routers, which is similar to the DIO broadcasting of RPL. We believe513

modelling multiple protocols could beneficially determine a set of common approaches for modelling protocols in514

general.515
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Appendix A ALGEBRAIC DEFINITION OF THE RULES IN SECTION 4642

Instantiation maps are indicated by 𝜂.

generateDIO
def

= Node𝑛 .(GenDIO | Rank.𝑖𝑑0 | 𝑖𝑑1)

▶Node𝑛 .(Send.DIO𝑛 .Rank.𝑖𝑑0 | Rank.𝑖𝑑1 | 𝑖𝑑2)

with 𝜂 = [0 → 0, 1 → 0, 2 → 1]

sendDIO
def

= Node𝑛1 .𝑖𝑑0 | Node𝑛2 .(Send.DIO𝑛 .𝑖𝑑1 | 𝑖𝑑2)

∥ /𝑥 (PNode𝑛1 .(PLink𝑥 .𝑖𝑑3 | 𝑖𝑑4) | PNode𝑛2 .(PLink𝑥 .Idle | 𝑖𝑑5))

▶Node𝑛1 .(Receive.DIO𝑛 .𝑖𝑑0 | 𝑖𝑑1) | Node𝑛2 .(Send.DIO𝑛 .𝑖𝑑2 | 𝑖𝑑3)

∥ /𝑥 (PNode𝑛1 .(PLink𝑥 .𝑖𝑑4 | 𝑖𝑑5) | PNode𝑛2 .(PLink𝑥 .In-use | 𝑖𝑑6))

with 𝜂 = [0 → 1, 1 → 0, 2 → 1, 3 → 2, 4 → 3, 5 → 4, 6 → 5]

sendDIO_Done
def

= Node𝑛 .(Send.DIO𝑛 .𝑖𝑑0 | 𝑖𝑑1) ∥ PNode𝑛 .𝑖𝑑2
▶Node𝑛 .𝑖𝑑0 ∥ PNode𝑛 .(ClearMulticast | 𝑖𝑑1)

with 𝜂 = [0 → 1, 1 → 2]

if ⟨−, Idle, ↓⟩

clearMulticast
def

= PNode𝑛 .(ClearMulticast | PLink𝑥 .In-use | 𝑖𝑑)

▶ PNode𝑛 .(ClearMulticast | PLink𝑥 .Idle | 𝑖𝑑)

clearMulticastEnd
def

= PNode𝑛 .(ClearMulticast | 𝑖𝑑) ▶ PNode𝑛 .𝑖𝑑

if ⟨−, In-use, ↓⟩

handleDIONotJoined
def

= Node𝑛 .(Receive.DIO𝑝 .Rank.𝑖𝑑 | 𝑖𝑑)

▶Node𝑛 .(IncRank.Rank.𝑖𝑑 | PrefPrnt𝑝 | Send.DAO𝑛,𝑝 | 𝑖𝑑)

if ⟨−,Rank, ↓⟩

handleDIOJoined
def

= Node𝑛 .(Receive.DIO𝑝 .𝑅𝑎𝑛𝑘.𝑖𝑑0 | Rank.𝑖𝑑1 | 𝑖𝑑2)

▶Node𝑛 .(LT.(L.Rank.𝑖𝑑0 | R.IncRank.Rank.𝑖𝑑1) | Receive.DIO𝑝 .Rank.𝑖𝑑2 | Rank.𝑖𝑑3 | 𝑖𝑑4)

with 𝜂 = [0 → 1, 1 → 0, 2 → 0, 3 → 1, 4 → 2]

if ⟨−, LT, ↓⟩

handleDIOLT
def

= Node𝑛 .(LT.True | Receive.DIO𝑝 .Rank.𝑖𝑑0 | 𝑖𝑑1) ▶Node𝑛 .𝑖𝑑0 | 𝑝

with 𝜂 = [0 → 1]

handleDIOGT
def

= Node𝑛 .(PrefPrnt𝑥 | LT.False | Rank.𝑖𝑑0 | Receive.DIO𝑝 .Rank.𝑖𝑑1 | 𝑖𝑑2)

▶Node𝑛 .(Send.DAO𝑛,𝑝 | PrefPrnt𝑝 | IncRank.Rank.𝑖𝑑0 | 𝑖𝑑1) | 𝑥

with 𝜂 = [0 → 1, 1 → 2]
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ranksComparison(n,m)
def

= LT.(L.Rank.Val(n) | R.Rank.Val(m))

▶ LT.(L.Rank.Val(n-1) | R.Rank.Val(m-1))

incRank(m)
def

= IncRank.Rank.Val(m) ▶ Rank.Val(m+1)

lt_l_0
def

= LT.(L.Rank.Val(0) | 𝑖𝑑0) ▶ LT.True

with 𝜂 = [ ]

lt_r_0
def

= LT.(R.Rank.Val(0) | 𝑖𝑑0) ▶ LT.False

with 𝜂 = [ ]

sendDAO
def

= (Node𝑛1 .(Send.DAO𝑛1,𝑛2 | 𝑖𝑑) | Node𝑛2 .𝑖𝑑)

▶(Node𝑛1 .(GenDIO | Joined | 𝑖𝑑) | Node𝑛2 .(Receive.DAO𝑛1,𝑛2 | 𝑖𝑑))

sendDAOUpParent
def

= Node𝑛2 .(PrefPrnt𝑛1 | Receive.DAO𝑛2,𝑓 | 𝑖𝑑) | Node𝑛1 .𝑖𝑑

▶Node𝑛2 .(PrefPrnt𝑛1 | 𝑖𝑑) | Node𝑛1 .(Receive.DAO𝑛1,𝑛2 | 𝑓 | 𝑖𝑑)

clearDAO
def

= Node𝑛1 .(Receive.DAO𝑛1,𝑛2 | 𝑖𝑑) ▶Node𝑛1 .(𝑛2 | 𝑖𝑑)
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