
Modelling and Verifying BDI Agents with Bigraphs

Blair Archibalda, Muffy Caldera, Michele Sevegnania, Mengwei Xua,∗

aSchool of Computing Science, University of Glasgow, UK

Abstract

The Belief-Desire-Intention (BDI) architecture is a popular framework for
rational agents; existing verification approaches either directly encode simplified
(e.g. lacking features like failure recovery) BDI languages into existing verifica-
tion frameworks (e.g. Promela), or reason about specific BDI language imple-
mentations. We take an alternative approach and employ Milner’s bigraphs as
a modelling framework for a fully featured BDI language, the Conceptual Agent
Notation (CAN)—a superset of AgentSpeak featuring declarative goals, concur-
rency, and failure recovery. We provide an encoding of the syntax and semantics
of Can agents, and give a rigorous proof that the encoding is faithful. Verifi-
cation is based on the use of mainstream software tools including BigraphER,
and a small case study verifying several properties of Unmanned Aerial Vehicles
(UAVs) illustrates the framework in action. The executable framework is a foun-
dational step that will enable more advanced reasoning such as plan preference,
intention priorities and trade-offs, and interactions with an environment under
uncertainty.

Keywords: BDI Agents, Modelling, Verification, Bigraphs

1. Introduction

The Belief-Desire-Intention (BDI) [1] architecture is a popular and well-
studied rational agent framework and forms the basis of, among others, AgentS-
peak [2], An Abstract Agents Programming Language (3APL) [3], A Practical
Agent Programming Language (2APL) [4], Jason [5], and Conceptual Agent
Notation (Can) [6]. In a BDI agent, the (B)eliefs represent what the agent
knows, the (D)esires what the agent wants to bring about, and the (I)ntentions
those desires the agent has chosen to act upon. BDIs have been very successful
in many areas such as business [7], healthcare [8], and engineering [9].

The deployment of autonomous systems in real-world applications raises con-
cerns of trustworthiness and safety, for example in scenarios such as autonomous

∗Corresponding Author
Email addresses: blair.archibald@glasgow.ac.uk (Blair Archibald),

muffy.calder@glasgow.ac.uk (Muffy Calder), michele.sevegnani@glasgow.ac.uk (Michele
Sevegnani), mengwei.xu@glasgow.ac.uk (Mengwei Xu)

Preprint submitted to Elsevier December 9, 2021

y
User

Operational

Semantics

Intentions

Beliefs

Desires

Plan

Library

BDI Agent

• Req1

• Req2

• . . .

Agent Require-

ments

Beliefs Add Del

Act

Add Del

Beliefs

I

Reaction Rules

B(0) B(2)

Beliefs Desires

Cons

Seq

Intent

Intentions

PlanSet PlanSet

Plans

Bigraph Model

Modelling

B(2)

Beliefs

|=
B(0) B(2)

Beliefs Desires

Cons

Seq

Intent

Intentions

PlanSet PlanSet

Plans

Static Properties

s1 s2

s3

s4

. . .

. . .

. . .

Dynamic Properties

Verification

Syntax

Semantics

Properties (Bigraph Patterns, Formula)

Figure 1: Modelling and verification framework for BDI agents.

control in space [10] and human-robot interaction in healthcare [11]. There is
a growing demand for verification techniques to aid analysis of behaviours in
increasingly complex and critical domains, and there has been a proliferation
of techniques and languages supporting BDI agent verification. Most of these
approaches either i) encode simplified, e.g. lacking features like failure recovery,
BDI languages directly into verification frameworks/model checkers, for exam-
ple, translating a simplified AgentSpeak language [12] into Promela/Spin [13, 14]
(no translation proof given) or ii) focus on verifying a specific implementation
of a BDI programming language, for example the Agent Infrastructure Layer
(AIL) [15] implements a BDI language as a set of Java classes that can be ver-
ified with the Java PathFinder [16] program model checker. While verifying
an implementation tells you how the system will operate, it might not corre-
spond to how it should operate with respect to the semantics of the given BDI
programming language.

We present an approach for reasoning about the semantics of a fully-fledged
BDI programming language— with the implementation of a faithful semantics
encoding and incorporation of some advanced BDI features—through a mathe-
matical model of agent execution, i.e. verified executable semantics.

Our approach models and verifies BDI agents, specified in the Can lan-
guage, by encoding them as an instance of Milner’s Bigraphical Reactive Sys-
tems (BRS) [17]. Can features a high-level agent programming language that
captures the essence of BDI concepts without describing implementation details
such as data structures. As a superset of AgentSpeak, Can includes advanced
BDI agent behaviours such as reasoning with declarative goals, concurrency, and
failure recovery. Importantly, although we focus on Can, the language features
are similar to those of other mainstream BDI languages and the same modelling
techniques would apply to other BDI programming languages.

2

Bigraphs provide a meta-modelling framework, developed as a unifying the-
ory for calculi, e.g. π-calculus [18], with extensions for priority and conditional
rewriting [19, 20]. As a graph-based rewriting formalism, over rules called reac-
tion rules, bigraphs not only provide an intuitive diagrammatic representation,
which is ideal for visualising the execution process of Can, but also offer com-
positional reasoning via explicit abstractions (sites/regions/names), customised
rewriting rules, and multiple ways to relate entities (placement and linking).
While rewriting based approaches have previously been used for agent sys-
tems [21], they are based on term, rather than graph, rewriting.

For analysis, BigraphER [19] is a freely available tool including rewriting,
verification based on bigraph patterns, and transition system export to model
checking tools [22].

Our bigraph encoding of the Can language includes: i) a structural encoding
that maps the syntax of Can (e.g. beliefs, plans, and intentions) into equivalent
bigraphs, and ii) an encoding of the operational semantics of Can as a set
of reaction rules. We provide a correctness proof that the translation of Can
semantics into reaction rules is faithful.

The framework is depicted in Fig. 1. On the left we have the BDI agents
and agent requirements – logical formulas. In the middle, Modelling, the agents
are translated into bigraphs that capture the structural elements and reaction
rules that capture their dynamics. Once we have encoded the agent into bi-
graphs, we use the model to perform verification (on the right) of user-specified
agent requirements. Verification takes two forms: checking static properties of a
state (the current bigraph representing an agent at some point in its execution)
through bigraph patterns, and checking dynamic properties, expressed as tem-
poral logic properties, against the transition system generated by BigraphER.
Finally, the user can employ BigraphER simply to “run” their agent model with
different initial settings.

We illustrate the framework with a small case study based on Unmanned
Aerial Vehicles (UAVs).

We make the following contributions:

• an encoding of the Can language and operational semantics in bigraphs,
using regions to represent the perspectives of Belief, Desire, Intention, and
Plan,

• proof that the encoding is faithful by showing each Can semantic rule is
encoded by a (finite) sequence of reaction rules,

• an illustration of our framework in a UAV case study,

• a reflection on Can based on insights gained from the encoding and also
reflections on the experience, both theoretical and practical, of bigraphs
as an approach to reason about agent programming languages—and pro-
gramming languages more generally,

• an overview of how we will build upon this foundation in the future to

3

reason about plan selection, intention tradeoffs and priorities, and inter-
actions with an uncertain environment.

The paper is organised as follows: in Section 2, we recall preliminaries of
BDI agents in the Can language and bigraphs; in Section 3, we provide the
structural encoding that maps the syntax of Can into equivalent bigraphs;
in Section 4, we present a comprehensive review of the core semantics of Can
(excluding concurrency and declarative goals) and, in particular, how the op-
eration of Can semantics can be viewed as AND/OR trees. In Section 5 we
encode the semantics given in Section 4 and in Section 6, we present the seman-
tics for concurrency and declarative goals and provide their bigraph encodings.
In Section 7, we illustrate our framework with examples and in Section 8, we
reflect on aspects of Can. In Section 9 we discuss related work; in Section 10
we lay out the our plans of for future extensions to this work; we conclude in
Section 11.

2. Preliminaries

We give an overview of BDI agents, described in the Conceptual Agent
Notation (Can) language, as well as Bigraphs and Bigraphical Reactive Systems
(BRS).

2.1. BDI Agents

A BDI agent has an explicit representation of beliefs, desires, and intentions.
The beliefs correspond to what the agent believes about the environment, while
the desires are a set of external events that the agent can respond to. To respond
to those events, the agent selects an appropriate plan (given its beliefs) from
the pre-defined plan library and commits to the selected plan by turning it into
a new intention.

Can is a superset of AgentSpeak [2] featuring the same core operational
semantics, along with several additional appealing features: declarative goals,
concurrency, and failure handling. In the following, we introduce the syntax of
Can, the semantics is given in Section 4.

A Can agent consists of a belief base B and a plan library Π. The belief base
B is a set of formulas encoding the current beliefs. Without loss of generality,
we specify our belief base following the logical language in AgentSpeak [2] that
takes the form ϕ ::= b | ¬b | (ϕ1 ∧ ϕ2) | true | false (where b denotes a ground
belief atom). More complex logics are possible but are outwith the scope of this
paper, i.e. we show how to encode general BDI agents in bigraphs, not how to
encode specific logics. All that we assume for any chosen logical language is
that it has belief operators to check whether a belief formula ϕ follows from the
belief base (i.e. B |= ϕ), to add a belief atom b to a belief base B (i.e. B ∪ {b}),
and to delete a belief atom from a belief base (i.e. B \ {b}).

A plan library Π contains the operational procedures of an agent and is a
finite collection of plans of the form Pl = e : ϕ← P with Pl the plan identifier,
e the triggering event, ϕ the context condition, and P the plan-body. The

4

triggering event e specifies why the plan is triggered, the context condition ϕ
determines when the plan-body P is able to handle the event. We denote the
triggering event of a plan Pl trigger(Pl) and we call E = {trigger(Pl) | Pl ∈ Π}
the event set that the agent knows how to respond to (i.e. it has plans for
response – though it might be the case none are applicable). For convenience,
we call the set of events from the external environment the external event set,
denoted Ee. Finally, the remaining events (which occur as a part of the plan-
body) are either sub-events or internal events.

By convention (e.g. in [5]), the set of plan-bodies P in a plan Pl = e : ϕ← P
may be referred to as the program or agent program and has the following syntax:

P ::= act | ?ϕ | + b | − b | e | P1; P2 | P1 ‖ P2 | goal(ϕs,P , ϕf)

with act an action, ?ϕ a test for ϕ entailment in the belief base, +b and −b
represent belief addition and deletion, and e is a sub-event (i.e. internal event).
To execute a sub-event, a plan (corresponding to that event) is selected and
the plan-body added in place of the event. In this way we allow plans to be
nested (similar to sub-routine calls in other languages). Actions act take the
form act = ϕ ← 〈φ+, φ−〉, where ϕ is the pre-condition, and φ+ and φ− are
the addition and deletion sets (resp.) of belief atoms, i.e. a belief base B
is revised with addition and deletion sets φ+ and φ− to be (B \ φ−) ∪ φ+

when the action executes. In addition, there are composite programs P1; P2

for sequence and P1 ‖ P2 for interleaved concurrency. Finally, a declarative
goal program goal(ϕs,P , ϕf) expresses that the declarative goal ϕs should be
achieved through program P , failing if ϕf becomes true, and retrying as long
as neither ϕs nor ϕf is true (see in [23] for details). Additionally, there are
auxiliary program forms that are used internally when assigning semantics to
programs, namely nil, the empty program, and P1 B P2 that executes P2 if the
case that P1 fails.

When a plan Pl = e : ϕ ← P is selected to respond to an event, its plan-
body P is adopted as an intention in the intention base Γ (a.k.a. the partially
executed plan-body). Finally, we assume a plan library does not have recursive
plans (thus avoiding potential infinite state space).

2.1.1. Running Example – Conference Travel Agent

For illustration, we give a classic example—arranging a conference trip—as
shown in Table 1.

A BDI agent desires to arrange a conference trip, denoted by an external
event e1. We assume there are only two ways to travel to the conference. The
first way is to travel by car, given by the plan Pl1 = e1 : b1 ∧ b2 ← act1; act2.
The plan Pl1 expresses that if the agent believes it owns a car (i.e. b1) and the
venue is in the driving distance (i.e. b2), it can start the car and drive all the
way to the venue. To specify the actions, we have act1 = b3 ← 〈{b4}, ∅〉 and
act2 = b4 ← 〈{b5}, ∅〉. For example, the action act1 expresses that if the car is
functional (i.e. b3) and after executing act1, the belief of the engine being on
(i.e. b4) will be added while deleting nothing from the belief base.

5

Table 1: A BDI Agent for Conference Travelling.

Belief
base

External
events

Plan library Actions

b1 e1 Pl1 = e1 : b1 ∧ b2 ← act1; act2 act1 = b3 ← 〈{b4}, ∅〉
b2 Pl2 = e1 : b6 ∧ b7 ← act3; e2; act4 act2 = b4 ← 〈{b5}, ∅〉
b3 Pl3 = e2 : b8 ← act5; act6 act3 = true← 〈{b8}, ∅〉
b4 act4 = b9 ← 〈{b5}, ∅〉

act6 = b10 ← 〈{b9}, {b8, b10}〉
where e1 stands for conference travelling, e2 for get onboard, act1 for start car, act2 for driving,
act3 for book flight, act4 for go to venue, act5 for go to airport, act6 for flying, b1 for own car, b2
for driving distance, b3 for car functional, b4 for engine on, b5 for at venue, b6 for budget allowed,
b7 for flight available, b8 for flight booked, b9 for flight landed, and b10 for at airport.

The second way is to travel by air, given by the plan Pl2 = e1 : b6 ∧ b7 ←
act3; e2; act4. This plan expresses that if the budget allows (i.e. b6) and there
is a flight (i.e. b7), the agent can book the ticket first, then post internally a
sub-event to actually travelling by plane, and go to the venue after landing. For
actions, we have act3 = true← 〈{b8}, ∅〉 and act4 = b9 ← 〈{b5}, ∅〉. To address
the sub-event e2, we have plan Pl3 = e2 : b8 ← act5; act6. Pl3 expresses that if
the agent believes the flight has been booked, it can go to the airport and fly by
plane. Also, we have act5 = b8 ← 〈{b10}, ∅〉 and act6 = b10 ← 〈{b9}, {b8, b10}〉.
In particular, action act6 indicates that if at airport (i.e. b10 for at airport),
after the flight it will add the belief atom b9 for flight landed, and delete both
belief atoms b8 for flight booked and b10 for at airport.

We define the initial belief base to be B = {b1, b2, b6, b7}. This expresses the
agent believes that it owns a car (b1), the venue is in the driving distance (b2),
the budget is sufficient for flight (b6), and there is a flight available (b7).

2.2. Bigraphs

Bigraphs are a universal modelling language, introduced by Milner [24], for
both modelling ubiquitous systems and as a unifying theory for many existing
calculi for concurrency and mobility. A bigraph consists of a pair of relations
over the same set of entities: a directed forest representing topological space
in terms of containment, and a hyper-graph expressing the interactions and
(non-spatial) relationships among entities. Each entity is assigned a type, which
determines its arity (i.e. number of links), and whether it is atomic (i.e. it cannot
contain other entities). For the purpose of presenting our approach, we provide
only an informal overview of bigraphs. The full theory is detailed elsewhere [24].

Bigraphs can be described in algebraic terms or with an equivalent diagram-
matical representation as shown in Table 2. An example bigraph, representing a
simple phone connection and cloning scenario, is in Fig. 2a. In general, bigraphs
permit any kind of shape (sometimes coloured) for typed entities, e.g. we use a
lock symbol for entity Locked and a diamond for entity Data. We allow entities
to be parameterised, i.e. K(n) for n ∈ N, allowing them to represent families
of entities, e.g. K(0),K(1), Entities can be connected through green links.

6

Table 2: Bigraph components and operations.

Component/Operation Algebraic Form Diagrammatic Form

Entity of arity 1 Ka K

a

Name closure /a Ka
K

Site id

Region 1

Nesting Act.B.id

B
Act

Parallel product Cx.id ‖ Dx.id
C D

x

Merge product Cx.id | Dx.id
C D

x

Names1 allow links (or potential links) to bigraphs in an external environment
or context, and are written above the bigraph. Unconnected links are closed
and drawn as a closed-off link. Grey rectangles are called sites that indicate
parts of the model that have been abstracted away. In other words, an entity
containing a site can contain zero or more entities of any kind. Finally, a dashed
rectangle denotes a region of adjacent parts of the system.

Topological placement of entities—given by the place-graph of Fig. 2b—
is described using: nesting that defines the containment relation on entities;
merge product that places two entities side-by-side at the same hierarchical level
(e.g. the two Room entities as they share a common parent); and parallel product
that places entities in separate regions, allowing them to be at different levels
of the hierarchy (e.g. any two Phone entities). Importantly, parallel product
would not match where one is below the other in the place graph, i.e. we are
looking for two disjoint sub-trees in the place graph. In both merge and parallel
product, bigraphs are linked on common names allowing a link graph (shown
in Fig. 2c) to be constructed, e.g. two Phone entities in different regions can
still connect. An overview of the bigraph components and operations are given
in Table 2.

For the example of Fig. 2, we can equivalently write it using the algebraic

1Specifically outer-names.

7

µ

Phone

Agent

Agent

Room

Phone

Agent

Phone

Agent

Room

(a)

0

Room

Agent

Phone

µ Data

Agent

Room

Agent

Phone

Agent

Phone

Data

(b)

Phone Phone Phone

(c)

Phone

Agent

Room

Phone

Agent

Room

x

Phone

Agent

Room

Phone

Agent

Room

x

I

(d)

Phone Phone

x
Phone Phone

x

I

if 〈−, µ , ↓〉

(e)

µ

Phone

Agent

Agent

Room

Phone

Agent

Phone

Agent

Room

µ

Phone

Agent

Agent

Room

Phone

Agent

Phone

Agent

Room

µ

Phone

Agent

Agent

Room

Phone

Agent

Phone

Agent

Room

connect
B

clone
B

(f)

Figure 2: Full bigraph modelling example: Agents and Calls. (a) Initial bigraph; (b) Place
graph; (c) Link graph; (d) Reaction rule connect; (e) Reaction rule clone; (f) Possible exe-
cution trace (matches shown as bold).

notion as:

/l (Room.(Agent.Phonel.(Locked | Data) | Agent.1) |
Room.(Agent.Phonel.1 | Agent.(/c Phonec.Data))

2.3. Bigraphical Reactive Systems

A bigraph represents a system at a single point in time. To allow models
to evolve over time we can specify a Bigraphical Reactive System (BRS) that
acts as a rewriting system. A BRS consists of a set of reaction rules of the form
L IR, where L and R are bigraphs. Intuitively, a bigraph B evolves to B′

by matching and rewriting an occurrence of L in B with R. Such a reaction is
indicated with B BB′. We use B+ to denote one or more applications of a

rule, and B∗ to denote zero or more rule applications. We also write
rule

B
to identify the reaction rule being applied to generate the transition. If no name
is specified we assume any rule applied. Reaction rules can be parameterised
when they are defined over entities with parameterised types, i.e. a rule r(k)
for all values of k. The transition system of a BRS is a (possibly infinite) graph
whose vertices are bigraphs representing the reachable states and whose edges
represent reactions over bigraphs.

BRSs are closely related to term rewriting [25], with bigraphs as terms and
model semantics determined by a set of user-specified rewrite rules. The only
built-in BRS semantic is matching a (sub-)bigraph and rewriting with a new

8

bigraph. This is in contrast to other modelling formalisms, e.g. π-calculus, that
use a fixed set of semantic rules and the user specifies a model that, when exe-
cuted on those rules, performs the expected operations. Term rewriting such as
Maude language [21] has found use in modelling agents previously, and bigraphs
offer similar advantages, while benefiting from e.g. the intuitive diagrammatic
notion, and support for multiple modelling dimensions (place and link).

An example reaction rule, connect, is in Fig. 2d, which models the case
where a disconnected Phone wants to connect to a call. The use of a name
means the first Phone may be either already on a call (creating a conference
call), or itself disconnected. By explicitly matching on Room entities we force
the agents in the reaction to be in two different rooms, although they might
connect (through x) to another Phone in the same room. An example of applying
connect to the example bigraph of Fig. 2a is the first transition of Fig. 2f.

We also use conditional bigraphs [20] that allow application conditions to
specify contextual requirements within the rewrite system. For example, we
can exclude certain bigraphs appearing within sites of the left-hand-side of a

rule. We write conditions in the form: if 〈−, , ↓〉 where the − indicates

a negative condition i.e. that the bigraph of the condition should not appear/be
matched, the black circle represents an arbitrary bigraph we want to ensure
does not appear, and ↓ indicates we specifically do not want the condition to
appear in (any of) the sites2. Importantly the bigraph in the condition cannot
appear anywhere in the site, including nested below other entities. When more
than one condition is specified for a reaction (separated by commas) they must
all hold for the rule to apply.

An example reaction rule using conditional bigraphs is in Fig. 2e, which
shows how a Phone may be cloned so long as neither Phone contains a lock,
i.e. a Locked entity is nowhere in the two sites. To allow copying (and dele-
tion), reaction rules can be augmented with instantiation maps that determine
a mapping between sites on the left and right-hand side of a reaction rule. In-
stantiation maps are denoted graphically as dashed arrows mapping sites in the
right-hand side R to sites in left-hand side L. The instantiation map is omit-
ted from a rule definition when it is an identity. For example, in Fig. 2e, the
instantiation map forces the two sites in the right hand side to be copies of the
first site on the left. An example of applying clone is the second transition in
Fig. 2f. Here, due to the commutative nature of parallel product, we match the
Phone containing data as the first Phone in the rule and the empty Phone as
the second. This rule would not apply to the locked phone due to the condition.

Furthermore, rule priorities can be introduced by defining a partial ordering
on the reaction rules of a BRS, as implemented in [26]. A reaction rule of lower
priority can be applied only if no rule of higher priority is applicable. We write
r1 < r2 when r2 has higher priority than r1. This notation extends to sets in
the natural manner, e.g. {r1, r3} < {r2, r4}, where rules in the same set have

2Conditional bigraphs also allows positive, and contextual conditions, however we do not
use these here.

9

the same priority.
A common approach for verifying a BRS is through (bounded) model check-

ing on its transition system, e.g. in Fig. 2f. To allow labelling of states, which
are themselves bigraphs, we define predicates as bigraph patterns. Informally, a
pattern can be seen as a left-hand-side of a reaction rule, i.e. the input to the
matching problem. A single state may have multiple labels if multiple patterns
occur in it. Patterns can also be combined with standard Boolean operators to
form logical formulae.

3. Encoding BDI Agents in Bigraphs

We define the structural encoding that maps the syntax (e.g. plans and
actions) of a Can BDI agent into equivalent bigraphs.

Recall a BDI agent is specified by a belief base B consisting of a set of belief
atoms, e.g. B = {b1, ..., bn}, a set of events (i.e. desires) the agent responds to,
and a plan library Π containing plans in form of Pl = e : ϕ← P . As the agent
executes, plan-bodies selected for addressing desires become the intentions of
the agent.

We take a multi-perspective approach (as introduced in [22]) in which per-
spectives are represented by separate and parallel regions. Mirroring the core
components of a BDI agent, we employ four perspectives: Belief that handles
knowledge storage and updates; Desire that manages the external events; In-
tention that captures the current execution states of plan-bodies; and Plan that
holds instructions for the agent on how to bring about its desires (i.e. how to
respond to specific events). This approach allows us to separate design con-
cerns, to be explicit how and when concerns interact, and to visualise them
naturally, as shown in Fig. 1. It also facilitates model extension, for example
we could in future add perspectives for the external (uncertain) environment,
or we could replace the Beliefs perspective with one that allows more complex
logic formulas.

The entities in the bigraph model for the syntax of a BDI agent are given in
Table 3, grouped by the four perspectives. For each entity we give the algebraic
form as well as structural information in the form of valid parents and linked
entities. The only atomic entities, i.e. that cannot nest other entities, are belief
atoms B(n), logical constant e.g. false, and events Ee. Detailed information on
the role for each of these entities is given as we introduce the encoding.

We define an encoding J·K : BDI → Bg(K) that maps the syntax of a
BDI agent – including beliefs, desires, intentions, and plans – to an equivalent
bigraph, where K denotes the set of all entity types in Table 3. No information is
lost through J·K and it is possible to define the inverse encoding J·K−1 establishing
an (structural) equivalence, that is, for any agent A we have A = JJAKK−1

as required. Although the inverse is easy to define, some cases are context
dependent, e.g. Eq. (12) and Eq. (13) related to belief atoms in Fig. 3 have
the same bigraph representation but always appear in distinct contexts (pre-

10

Table 3: Bigraph entities for BDI syntax encoding.

Description Entity Parent(s) LinksTo
Diagrammatic

Form

Belief Base Beliefs

Beliefs

Belief Atoms B(n) {Beliefs,Pre,Add,Del}
B(n)

Logical False false {Beliefs,Pre} false

Desire Set Desires

Desires

Event Ee {Desires,PB,Conc} PlanSete

Intention base Intentions

Intentions

Intention Intent Intentions

Intent

Plan library Plans

Plans

Relevant Plans PlanSete {Plans, Intent, Seq,Cons, L,R} Ee

PlanSet

Plan Plan PlanSete

Plan

Plan Body PB Plan

PB

Action Act {PB, Seq,Cons, L,R}
Act

Precondition Pre {Act, Plan}
Pre

Belief Addition Add Act

Add

Belief Deletion Del Act

Del

Sequence ; Seq {PB,Try}

Seq

Plan Choice B Try {Intent, Seq,Goal, L,R}

Try

Next Pointer Cons {Seq,Try}
Cons

Concurrency ‖ Conc {Seq,Try,PB}
Conc

Concurrency Markers {L,R} Conc

L

Declarative Goal Goal {Seq,Try, L,R,PB}
Goal

Success Condition SC Goal

SC

Failure Condition FC Goal

FC

11

JbnK = B(n) (1)

JfalseK = false (2)

JtrueK = 1 (3)

JB = {b1 . . . bn}K = Beliefs.(Jb1K | . . . | JbnK) (4)

JEe = {e1 . . . en}K = Desires.(Je1K | . . . | JenK) (5)

JeK = Ee (6)

JΓ = {P1, ..., Pn}K = Intentions.(Intent.JP1K | · · · | Intent.JPnK) (7)

JΠ = {Pl1 . . . P ln}K = Plans.
∏
e∈E

PlanSete.(JPljK | . . . | JPlkK)
where trigger(Plj)=trigger(Plk)=e

(8)

J〈N1, . . . , Nn〉K = JN1K ‖ . . . ‖ JNnK where Ni ∈ {Ee, P,B,Γ,Π} (9)

(a) Beliefs, desire, intention, and plan library encoding.

JnilK = 1 (10)

Jact = ϕ← 〈φ+, φ−〉K = Act.(Pre.JϕK | Add.Jφ+K | Del.Jφ−K) (11)

Jϕ = b1 ∧ · · · ∧ bnK = Jb1K | . . . | JbnK (12)

Jφ± = {b1 . . . bn}K = Jb1K | . . . | JbnK (13)

JP1;P2K = Seq.(JP1K | Cons.JP2K) (14)

JP1 ‖ P2K = Conc.(L.JP1K | R.JP2K) (15)

Jgoal(ϕs, P, ϕf)K = Goal.(SC.JϕsK | JP K | FC.Jϕf K) (16)

JP1 B P2K = Try.(JP1K | Cons.JP2K) (17)

Je : (|ϕ1 : P1, . . . , ϕ2 : P2|)K = PlanSete.(Jϕ1 : P1K | . . . | Jϕ2 : P2K) (18)

Jϕ : P K = Plan.(Pre.JϕK | PB.JP K) (19)

JPl = e : ϕ← P K = Jϕ : P K (20)

(b) Plan and plan-body encoding.

Figure 3: Encoding J·K from BDI agents to bigraphs.

conditions and action outcomes respectively)3. For brevity we omit the details
of the inverse encoding.

The encoding is defined inductively as shown in Fig. 3. To aid explanation,
we give the encoding in two parts. In Fig. 3a, the encoding of agent belief,
desire and intention structures are given. In the second part, the encoding of
plans, in particular the plan-bodies, of an agent are provided in Fig. 3b. The
parts are not distinct e.g. the plans within the plan library are encoded using

the encoding of plan-bodies. We use
∏

M
def
= M | . . . | M to denote iterated

merge product. In the next few sections, we explain the (numbered) equations
in Fig. 3.

3The inverse of true is a special case as we may map either to the truth term or an empty
context set. However both options give rise to behaviourally equivalent agents.

12

3.1. Encoding of Beliefs, Desires, and Intentions

Equation 9 is a general rule describing how tuples map into parallel regions.
We use this to ensures the top-level components of an agent 〈B, Ee,Γ,Π〉—
beliefs, desires, intentions, and plan library—are mapped to separate perspec-
tives (regions) in the bigraph.

We assume all belief formulas ϕ are expressed in propositional logic. Recall
that the convention in AgentSpeak for the belief base is ϕ ::= b | ¬b | (ϕ1 ∧
ϕ2) | true | false. For convenience, the parameterised entities B(n) (Eq. (1))
are used for both positive and negative atoms: b or ¬b (e.g. JbK = Jb0K =
B(0), J¬bK = Jb1K = B(1)). Using this, all formulas can be constructed in pure
conjunctive form, i.e. ϕ = b1 ∧ · · · ∧ bn. We allow logical constants for true and
false representing formulas that are always/never entailed, e.g. an action with
pre-condition false never executes. In the bigraph model, we only assign an
entity false to represent logical false (Eq. (2)), while the logical constant true
is mapped to the empty bigraph (Eq. (3)) as we assume an empty formula is
always true, e.g. there may be no pre-condition for some action.

Encoding the belief base B (and any set concept in general) from a BDI
agent to bigraphs leverages the bag-like nature of nesting (Eq. (4)). For empty
sets, we have J∅K = 1, i.e. the bigraph with one empty region.

To encode desires, an entity of Ee is created for each possible event (that
an agent desires to respond to) as seen in Eq. (5) and Eq. (6). Importantly, Ee
exports a name e that allows us to identify specific events using links. Recall
that a set of relevant plans is the set of plans which have the same triggering
event. We use this when encoding the plan library Π (Eq. (8)) by having it
contain sets of relevant plans PlanSete with e connecting the event e with the
set of plans that respond to it. This differs from typical BDI agents where
the plan library is a flat set of plans. This use of indexing by event name
through relevant plans decreases the likelihood of some potential human errors,
e.g. misspelling of event names and also simplifies agent reasoning by avoiding
repetitive searching for relevant plans.

Finally, for intentions, we utilise the same set-like structure as beliefs, this
time encoding individual (partially executed) plan-bodies as required (Eq. (7)),
which will be discussed in the next section.

3.2. Encoding Plans and Plan-Bodies

Plans and plan-bodies are specified with the language given in Fig. 4, which
includes includes two forms of plan-bodies: 〈UserP〉 that the user writes, and
the more comprehensive 〈P〉 that can occur during any execution.

A plan e : Pre ← 〈UserP〉 consists of a triggering event e, the context
(pre-condition) 〈Pre〉, and a user-defined plan-body specified by 〈UserP〉. The
user-defined plan-body 〈UserP〉 may be the basic building block 〈BasicP〉 in-
cluding handling an internal event e, or executing an action 〈Act〉. Actions also
have the pre-condition 〈Pre〉, which indicates when an action is valid for exe-
cution given in the current belief state. After executing an action, φ+ and φ−

are sets of beliefs to be added and removed from the belief state, respectively.

13

〈Plan〉 ::= e : 〈Pre〉 ← 〈UserP〉
〈UserP〉 ::= 〈BasicP〉 | 〈UserP〉;〈UserP〉 | 〈UserP〉‖〈UserP〉 |

goal(ϕs, e, ϕf)

〈P〉 ::= nil | 〈BasicP〉 | 〈P〉;〈P〉 | 〈P〉‖〈P〉 |
goal(ϕs, 〈P〉, ϕf) | 〈P〉B〈P〉 |
e : (|ϕ1 : 〈UserP〉, . . . , ϕn : 〈UserP〉|)

〈BasicP〉 ::= e | 〈Act〉 | +b | −b | ?ϕ

〈Act〉 ::= 〈Pre〉 ← 〈φ+, φ−〉
〈Pre〉 ::= ϕ | false | truth

Figure 4: Grammar for plans and plan-bodies.

The user-defined plan-body 〈UserP〉 can also be combined in the three ways:
〈UserP〉; 〈UserP〉 executing those two 〈UserP〉 in sequence, 〈UserP〉 ‖ 〈UserP〉
pursing those two 〈UserP〉 concurrently, and goal(ϕs, e, ϕf) achieving the state
ϕs through addressing an internal event e, failing when ϕf holds, and retrying as
long as neither ϕs nor ϕf is believed to be true. Internally (i.e. during execution)
programs may have three additional forms: nil is the empty program that is al-
ways successful, 〈P〉B〈P〉 represents trying the first 〈P〉 while keeping the second
〈P〉 as a backup in case the first 〈P〉 fails, and e : (|ϕ1 : 〈UserP〉 . . . ϕn : 〈UserP〉|)
is a set of backup plans which are all triggered by the event e.

The bigraph encoding of plans and plan-bodies (Fig. 3b) mirrors the gram-
mar given in Fig. 4 by specifying a mapping for each syntactic form. Each
individual plan is represented as the pairing of some pre-condition (as encoded
belief atoms), nested in the entity Pre, and an encoded plan-body, nested in
entity PB (Eq. (19) and Eq. (20) in Fig. 3b).

Bigraph entities of 〈UserP〉 are built by introducing additional controls for
each form, e.g. Seq. As the merge product operator of bigraphs is commutative,
i.e. A | B ≡ B | A, we need to add additional entities to force an ordering on
the children. For example, the sequencing P1;P2 (Eq. (14) in Fig. 3b) utilises
an entity Cons that identifies P2 as the next to execute after the successful ex-
ecution of its predecessor P1. Likewise, the form P1 B P2 (Eq. (17)), that tries
P1 with P2 as a backup, uses Cons to distinguish between P1 and P2. For con-
currency (Eq. (15)) we require two additional controls L and R to identify the
left and right of the concurrency structure ‖. Finally, for the form of declarative
goals goal(ϕs, P, ϕf) (Eq. (16)), we map it to an entity Goal that nests a suc-
cess condition SC, failure condition FC, and the current form of the remaining
program.

Finally, actions are encoded (Eq. (11)) in a similar way. In particular, raw
entailment and belief state update forms, i.e. ?ϕ,+b, and −b, may be seen as
special cases of actions that do not update the external environment. We estab-

14

Table 4: Example encoding of a conference travel agent in Table 1.

Agent JAgentK

B = {b1, b2, b6, b7} Beliefs.(B(1) | B(2) | B(6) | B(7))
Π = {Pl1, P l2, P l3} Plans.(PlanSete1 .(JPl1K | JPl2K) | PlanSete2 .JPl3K)
Pl1 = e1 : ϕ1 ← act1; act2 Plan.(Pre.(Jϕ1K | PB.Seq.(Jact1K | Cons.Jact2K))
Pl2 = e1 : ϕ2 ← act3; e2; act4 Plan.(Pre.(Jϕ2K | PB.Seq.(Jact3K | Cons.Seq.(Je2K | Cons.Jact4K)))
Pl3 = e2 : ϕ3 ← act5; act6 Plan.(Pre.(Jϕ3K | PB.Seq.(Jact5K | Cons.Jact6K))
ϕ1 = b1 ∧ b2 B(1) | B(2)
act1 = b3 ← 〈{b4}, ∅〉 Act.(Pre.B(3) | Add.B(4) | Del.1)
act2 = b4 ← 〈{b5}, ∅〉 Act.(Pre.B(4) | Add.B(5) | Del.1)
ϕ2 = b6 ∧ b7 B(6) | B(7)
act3 = true← 〈{b8}, ∅〉 Act.(Pre.1 | Add.B(8) | Del.1)
e2 Ee2
act4 = b9 ← 〈{b5}, ∅}〉 Act.(Pre.B(9) | Add.B(5) | Del.1)
ϕ3 = b8 B(8)
act5 = b8 ← 〈{b10}, ∅〉 Act.(Pre.B(8) | Add.B(10) | Del.1)
act6 = b10 ← 〈{b9}, {b8, b10}〉 Act.(Pre.B(10) | Add.B(9) | Del.(B(8) | B(10)))

lish the following equivalences to unify them under the same action encoding.

?ϕ ≡ act : ϕ← 〈∅, ∅〉 (21)

+b ≡ act : ∅ ← 〈{b}, ∅〉 (22)

−b ≡ act : ∅ ← 〈∅, {b}〉 (23)

3.3. Example of Encoding

To show how our encoding works, Table 4 provides the mapping for a BDI
agent for the travelling example in Table 1.

This completes the structural encoding (i.e. the syntactic specification of
a BDI agent), we now turn our attention to a behavioural encoding of BDI
agents (i.e. the operation semantics of a BDI agent) as a BRS. We do so in
an incremental manner in the following three steps: in Section 4 we define the
semantics of a subset of Can that we call the core Can. Core Can semantics
excludes concurrency and declarative goals, and so resembles AgentSpeak [2].
In Section 5 we encode core Can as a BRS and in Section 6 we extend such a
BRS for the core Can to include concurrency and declarative goals.

4. Semantics of Core CAN Language

4.1. Overview of Core Can language

The core operation of an agent in response to an (external) event is as follows.
All relevant plans for that event are retrieved from the (pre-defined) plan library.
An applicable plan is selected (if one exists) and its plan-body is added to the
intention base. The plan-body consists of discrete steps, e.g. actions or sub-
events. When executing a sub-event, its applicable plan requires to be found,
and its plan-body is also added to the intention base – this forms an execution
tree within the intention. A BDI agent continues to execute until there are
no pending events, and all intentions are completed (either successfully or with
failure).

15

4.2. Core Can Semantics

We specify the behaviour of an agent as an operational semantics [27] defined
over configurations C and transitions C → C′. Transitions C → C′ denote a single
execution step between configuration C and C′. We write C → (resp. C 9) to
state that there is some (resp. is not) C′ such that C → C′.

A derivation rule specifies the necessary conditions for an agent to transition
to a new configuration. A derivation rule consists of a (possibly empty) set of
premises pi (i = 1, . . . , n) on C, and a conclusion, denoted by

p1 p2 · · · pn
C → C′

l

where l is a rule name. We write C l−→ C′ to denote C evolves to C′ through the
application of derivation rule l.

The Can semantics were originally defined [6] over the triple 〈B,A, P 〉 where
B is the current belief base, A the sequence of actions that have been executed,
and P the current partially executed plan-body. As the recorded sequence of
executed actions is never used to determine the operation of an agent, i.e. there
are no pre-condition on A, we do not include it here (i.e. 〈B, P 〉). It is trivial
to log the action sequence within the bigraph model if required, however we do
not do so here because an action log introduces states that would otherwise be
isomorphic (resulting in larger transition systems).

The semantics of Can language is specified by two types of transitions. The
first transition type, denoted as →, specifies intention-level evolution in terms
of configuration 〈B, P 〉 where B is the current belief set, and P the plan-body
currently being executed (i.e. the next step of the current intention). The second
type, denoted as⇒, specifies agent-level evolution over 〈Ee,B,Γ〉, detailing how
to execute a complete agent where Ee stands for the a set of pending external
events required to address.

Fig. 5 gives the set of derivation rules for evolving any single intention.
For example, derivation rule act handles the execution of an action, when the
pre-condition is met, resulting in a belief state update. Rules ?, +b and −b are
special actions that perform pre-condition check (?), adding one belief atom (+b)
and deleting atoms (−b). As in Section 3, we assume an equivalence between
act and ?,+b,−b and do not directly model these rules. Rule event replaces
an event with the set of relevant plans, while rule select chooses an applicable
plan from a set of relevant plans while retaining un-selected plans as backups.
With these backup plans, the rules for failure recovery B;, B>, and B⊥ enable
new plans to be selected if the current plan fails (due to e.g. the unexpected
environment changes). Finally, rules ; and ;> describe executing plan-bodies in
sequence.

The agent-level semantics are given in Fig. 6. An agent configuration is de-
fined by the triple 〈Ee,B,Γ〉 consisting of a set of external events Ee to which
the agent is required to respond, the belief set B, and the intention base Γ – a
set of partially executed plan-bodies P that the agent has already committed
to. The derivation rule Aevent handles external events, which originate from the

16

act : ψ ← 〈φ−, φ+〉 B � ψ
〈B, act〉 → 〈(B \ φ− ∪ φ+), nil〉

act
B |= φ

〈B, ?φ〉 → 〈B, nil〉
?

〈B,+b〉 → 〈B ∪ {b}, nil〉
+ b

〈B,−b〉 → 〈B \ {b}, nil〉
− b

∆ = {ϕ : P | (e′ = ϕ← P) ∈ Π ∧ e′ = e}
〈B, e〉 → 〈B, e : (| ∆ |)〉

event

ϕ : P ∈ ∆ B |= ϕ

〈B, e : (| ∆ |)〉 → 〈B, P B e : (| ∆ \ {ϕ : P} |)〉
select

〈B, P1〉 → 〈B′, P ′1〉
〈B, P1 B P2〉 → 〈B′, P ′1 B P2)〉

B; 〈B, (nilB P2)〉 → 〈B′, nil〉
B>

P1 6= nil 〈B, P1〉9 〈B, P2〉 → 〈B′, P ′2〉
〈B, P1 B P2〉 → 〈B′, P ′2〉

B⊥

〈B, P1〉 → 〈B′, P ′1〉
〈B, (P1;P2)〉 → 〈B′, (P ′1;P2)〉

;
〈B, P 〉 → 〈B′, P ′〉

〈B, (nil;P)〉 → 〈B′, P ′〉
;>

Figure 5: Core Can semantics.

e ∈ Ee

〈Ee,B,Γ〉 ⇒ 〈Ee \ {e},B,Γ ∪ {e}〉
Aevent

P ∈ Γ 〈B, P 〉 → 〈B′, P ′〉
〈Ee,B,Γ〉 ⇒ 〈Ee,B′, (Γ \ {P}) ∪ {P ′}〉

Astep

P ∈ Γ 〈B, P 〉9
〈Ee,B,Γ〉 ⇒ 〈Ee,B,Γ \ {P}〉

Aupdate

Figure 6: Derivation rules for agent configuration.

17

environment4, by adopting them as intentions. Rule Astep selects an intention
from the intention base, and evolves a single step w.r.t. intention-level transi-
tion, while Aupdate discards intentions which cannot make any intention-level
transition (either because it has already succeeded, or it failed)5.

4.3. Example of Core Can Semantics

To show how an agent evolves in the Can semantics we use the conference
travelling example in Table 1. Assuming the external event e1 has already been
converted from a desire to an intention, Fig. 7 illustrates the intention-level
evolution of this intention according to the rules presented in Fig. 5. In Fig. 7
agents evolve from left to right, each line consists of a single step of an intention.
Below each step we show the sub-rules that applied. A commentary is as follows.

When the event e1 is posted to the agent, the event rule in Fig. 5 transforms
e1 into the program containing all the relevant plans available (1). If the agent
believes that it owns a car and the venue is within driving distance (i.e. ϕ1

holds holds), then the select rule transforms the set of relevant plans into the
selected plan (2), which indicates the sequence act1; act2 is ready for execution,
while the other plans are indicated as backup on the right-hand side of the
symbol B. Next, the agent tries to execute the program act1; act2. Given the
belief base in Table 1, the pre-condition act1 does not hold (e.g. the car engine
fails to start), thus act1 9. Meanwhile, the backup plan is applicable shown by
the derivation select from e1 : (|ϕ2 : act3; e2; act4|) to act3; e2; act4 B e1 : (|∅|).
According to the rule B⊥, the agent can initiate the failure recovery by trying
such a backup plan, resulting in the program shown in (3). Since act3 has true

as its pre-condition, it can always be executed shown by act3
act−−→ nil. After

execution of act3, the rule ; then updates the entire sequence from act3; e2; act4
to nil; e2; act4. After the left-hand side of B is updated, the rule B; can then
further transform the program to that in (4). In order to discard the symbol
nil in a sequence, it requires the part after nil in a sequence to be progressed,
namely e2; act4. To progress the e2; act4, it requires to progress the first part of
such a sequence, i.e. e2. To progress the event e2, it requires to retrieve a set of
its relevant plans. Therefore, we have what is shown in the (5). The rule select
firstly transforms the event e2 to a set of relevant plans, secondly the rule ;
updates the sequence e2; act4, and thirdly the symbol nil can be removed by
the rule ;> from the entire sequence nil; e2; act4. Finally, the rule B; can follow
up transforming the entire program on the left-hand side of B accordingly.

For brevity, we omit the rest of the evolution. In practice an agent may
execute multiple intentions concurrently.

4As we do not model the environment explicitly, we assume any events are waiting in the
desire set at the start of an agent execution.

5In the original Can semantics there is no way to determine if an event was handled
successfully or not, both cases are treated the same way (by removing the intention when it
is done or cannot progress).

18

(1) e1
event−−−→ e1 : (|ϕ1 : act1; act2, ϕ2 : act3; e2; act4|)

(2) e1 : (|ϕ1 : act1; act2, ϕ2 : act3; e2; act4|) select−−−−→ act1; act2 B e1 : (|ϕ2 : act3; e2; act4|)

(3) act1; act2 B e1 : (|ϕ2 : act3; e2; act4|)
act1 9[

e1 : (|ϕ2 : act3; e2; act4|)
select−−−−→ act3; e2; act4 B e1 : (|∅|)

]
act3; e2; act3 B e1 : (|∅|)

B⊥−−→

(4) act3; e2; act4 B e1 : (|∅|) act3
act−−→ nil

act3; e2; act4
;−→ nil; e2; act4

B;−→

nil; e2; act4 B e1 : (|∅|)

(5) nil; e2; act4 B e1 : (|∅|) e2
select−−−−→ e2 : (|ϕ3 : act5; act6|)

e2; act4
;−→ e2 : (|ϕ3 : act5; act6|); act4

nil; e2; act4
;>−→ e2 : (|ϕ3 : act5; act6|); act4

B;−→

e2 : (|ϕ3 : act5; act6|); act4 B e1 : (|∅|)

Figure 7: Illustration of intention-level evolution of the event e1.

4.4. AND/OR Trees

We can view the semantic evolution of the agent program in terms of re-
ductions over AND/OR trees, and use this representation to reason about the
interactions between events, plans, and intentions [28, 29]. AND nodes are
successful if all of their children succeed while OR nodes are successful if at
least one child succeeds. We make heavy use of such AND/OR trees in our
behavioural encoding of Can semantics in bigraphs that can be seen (in part) as
reductions over these trees. However, we stress that although the behaviour of
a Can agent can be visualised via AND/OR trees, in practice, the trees are not
fully realised in memory and are created on-demand as the intention evolves.

The root of an AND/OR tree is a top-level external event represented as
an OR node, that is, an event succeeds if at least one plan succeeds. The tree
is built implicitly through the syntax of Can. For example, the sequencing
symbol ; ensures that execution must successfully execute all steps in the plan-
body to allow the parent AND node to succeed. Meanwhile, the failure recovery
symbol B represents choice, with backup plans creating the branching structure.
In Section 6.1, an additional form ‖ will be introduced to complement ; by
identifying branches that can be explored concurrently.

As an example we revisit the conference travelling example of Table 1 show-
ing one possible AND/OR tree for the plans Pl1 = e1 : ϕ1 ← act1; act2,
Pl2 = e1 : ϕ2 ← act3; e2; act4, and Pl3 = e2 : ϕ3 ← act5; act6. In this case,
Pl1 was chosen first and Pl2 kept as a backup plan as shown in Fig. 8. The
top-level event e1 is achieved if either of the two plans Pl1 or Pl2 are successful.
In this case the agent has chosen to do Pl1 before Pl2, although the ordering
is not fixed ahead of execution time. The plan Pl1 itself involves performing
the actions act1 followed by act2, whereas one part of plan-body of plan Pl2
involves achieving the sub-event e2 which can, in turn, be addressed by the plan
Pl3.

19

e1

Pl1

act1 act2

Pl2

act3 e2 act4

Pl3

act5 act6

OR

AND

Intention

ϕ1 ϕ2

ϕ3

.

; ; ;

;

Figure 8: Snapshot of AND/OR tree representing the intention for the event e1 where the
agent chose to try Pl1 before Pl2 during execution.

From the point of view of the semantics, the tree is explored in a depth-
first manner with reductions being pushed down the tree. For example, the
derivation rule ; reduces a given branch of the tree while the rule ;> moves to
the next child at the same AND level. When a node cannot be reduced, e.g. if
an action pre-condition is unmet, this failure propagates to the closest branch
point (OR-node) where they are handled by the failure recovery rules (e.g. B⊥).

5. Encoding Core CAN Semantics in Bigraphs

We now encode the core Can semantics (presented in Figs. 5 and 6) as a BRS
and show that the encoding is faithful. By faithful we mean that for each tran-

sition
l

=⇒ (resp. intention
l−→) 〈Ee,B,Γ〉 l

=⇒ 〈E′e,B′,Γ′〉 (resp. 〈B, P 〉 l
=⇒ 〈B′, P ′〉)

there exists a finite sequence of reaction rules, such that J〈Ee,B,Γ〉K B+J〈E′e,B′,Γ′〉K
(resp. J〈B, P 〉K B+J〈B′, P ′〉K) and no new BDI derivation rule becomes appli-
cable. The encoding may introduce new intermediate states, but there are no
new applicable BDI derivation rules, i.e. there is no additional branching.

Throughout the remainder of the paper we use Eq. (9) from Fig. 3a to allow
focusing on specific elements of an agent/intention, e.g. allowing us to ignore
the plan library Π above as this is never mutated.

To encode control flow required for execution, we require additional entities
that are not part of the structural encoding, i.e. they do not necessarily have a
corresponding agent representation in Can. These additional entities are given
in Table 5 and their purpose is introduced as they are used.

For brevity, we give an overview of key aspects of the encoding. The full
executable model, for use with BigraphER [19], is available [30].

5.1. Belief Checks and Updates

The Can semantics assumes set operations and logic entailment as built-
in operators. However, as we want an executable semantics, these must be
explicitly encoded in the BRS.

20

Table 5: Additional entities for semantics encoding.

Description Entity Parent(s) LinksTo
Diagrammatic

Form

Set of beliefs to check Check Beliefs
Check

Unknown check result CheckRes {Act,Plan}
Successful entailment CheckRes.T {Act,Plan}
Failed entailment CheckRes.F {Act,Plan}
Not-yet checked token CheckToken Plan

Reduction of entity/site Reduce {Intention,Try,Seq,Conc, L,R}
Reduction failure ReduceF {Intention,Seq,Try, L,R} 9

B(n) B(n)

Check

Beliefs

l

B(n)

Check

Beliefs

l

I

(a) check T(n)

Check

Beliefs

Beliefs

I

(b) check end

B(n)

Check
Beliefs

Beliefs

if 〈−, B(n) , ↓〉I

(c) check F

Figure 9: Reactions for logical entailment.

We encode belief updates and checks in the usual recursive manner as shown
in Fig. 9. For example, the reaction rule check end provides a base-case for
check T(n), while check F (a conditional rule) handles the case when there is
no match in the belief base. Similar reaction rules (not shown) are provided to
perform addition and deletion of beliefs6.

The belief check reaction rules use auxiliary entities, e.g. Checkl and CheckResl
(shown as a diamond). These auxiliary entities, which are added from other re-
action rules, encode control flow. As these entities are not part of the Can
syntax encoding, they do not enable any additional agent steps. After per-
forming the sequence of reaction rules equivalent to a Can derivation rule, no
auxiliary entities will be present – they are only allowed in intermediate states.

Notice the number of children of Check decreases on each reaction rule appli-
cation suffices to prove that the logical entailment (resp. checks/updates) will
complete in a finite number of steps. As such, placing belief checks/updates into
the highest rule priority class of the BRS allows us to assume belief checks/updates
are atomic with respect to the other reactions. That is, an agent never sees a
part-modified belief set (as required to model atomic actions).

6We assume additions/deletions are disjoint (as they are in practice) so that there are no
race conditions between the reactions.

21

We refer to the priority class of set operations with the label

{set ops} def
={check T(n), check end, check F,

del in(n), del notin(n), delete end,

add end, add notin(n), add in(n)}

5.2. Modelling Reductions

The Can semantics assumes a notion of irreducibility (this is the same as
negative premises in [31, 32]). That is, the derivation rule 〈B, P 〉9 represents
the failure of an agent to perform any further operation on the program P under
the belief B, given all specified reducible rules in Can. For example, 〈B, act〉9
holds if the pre-condition of the action act is not met.

While Can remains agnostic to such details, we require the notion of irre-
ducibility to be encoded explicitly to obtain an executable semantics. To encode
explicit reduction, we introduce auxiliary controls Reduce (by colouring the en-
tity/site being reduced as red) and ReduceF (representing 9).

Reduce requests the entities nested below are reduced, for example by execut-
ing an action. In the case reduction is not possible, e.g. if an action precondition
is not met, ReduceF represents failure to reduce, enabling checks of the premise
〈B, P 〉9 in derivation rules.

If we view intentions as AND/OR trees, the explicit reductions perform the
tree search with Reduce determining which sub-tree to reduce next, and ReduceF
indicating a sub-tree could not reduce and backtracking should be performed.

We define a function JJ·KK : 〈B, P 〉 → Bg(K ∪ Reduce) that, for belief base
B and intention-level program P , requests that the sub-tree rooted at P be
reduced. That is:

JJ〈B, P 〉KK def
= JBK ‖ Reduce.JP K

where B is a mutable, globally scoped, environment for the reduction of P .
This is benefit of bigraphs for modelling: environments can be placed in parallel.

The function JJ·KK for reduction plays a key role in our semantic encoding. For
example, it forms the bridge between agent-level steps and intention-level steps,
i.e. an agent 〈B, Ee, {P ∪ Γ},Π〉 can (try to) step intention P using JJ〈B, P 〉KK.

5.3. Core Semantic Encoding

Given the atomic set operations and explicit reduction, we now show how
the core Can semantics are encoded as a BRS. In the following lemmas, for
readability, we allow free variables and assume the obvious interpretation. For
example, we assume that P reduces to P ′, en is an event in E, etc.

Also, for readability, we refer to a “corresponding” reduction sequence to
mean that there is a one to one correspondence between the Can step and the
reduction sequence, no new possible reductions are introduced. The reduction
sequence may not be unique, for example set operations can be performed in
different orders, but the outcome of the sequence is the same as the Can step
outcome, i.e. we model a big-step semantics through a sequence of small-steps.

22

Beliefs Pre

Act

Check

Beliefs
Pre

Act

I

(a) act check

Act

9I

(b) act F

Beliefs Add Del

Act

Add Del

Beliefs

I

(c) act T

Figure 10: Reactions for actions.

5.3.1. Actions

The main operation of an agent is to execute actions that update both
the external environment, e.g. moving a block, and in-turn revise the internal
belief base. Recall that, in the encoding of syntax of Can, we have established
entailment and belief state updates (rules ?ϕ,+b,−b) as special cases of actions
that simply do not update the external environment. As such, we can safely
omit the explicit reactions for entailment and belief state updates.

If the pre-condition of an action is true, i.e. B |= φ, performing (or reducing)
an action consists of the reactions act check and act T as shown in Fig. 10.
Firstly, the reaction act check requests the action pre-condition to be checked
by nesting a Check entity within the belief base. As we have established set
operations to be the highest priority class, we know a belief check operation
is finite and applies atomically. Therefore, it does not alter the shape of JBK
(i.e. no other Can rules are enabled). After successful entailment of the action
pre-condition, the reaction rule act T performs the action by updating the belief
base. Once again, given the priority of set operations, the set updates will be
effectively atomic and no other Can derivation rule can interrupt such a belief
update.

Lemma 1. (Faithfulness of act) act has a corresponding finite reaction sequence
JJ〈B, act : ϕ← 〈φ+, φ−〉〉KK B+J〈B′, nil〉K.

Proof. We show B+ has form
act check

B
{set ops}

B* act T
B

{set ops}
B*

and intermediate states do not allow additional branching. Consider the transi-
tions applicable in each of the four steps; recall the rule priority is act check <
act T < {set ops}.

23

Step 1
act check

B. The initial state JJ〈B, act : ϕ← 〈φ+, φ−〉〉KK is

Beliefs.(Jb1K | . . . | JbnK) ‖ Reduce.Act.(Pre.JϕK | Add.Jφ+K | Del.Jφ−K).

No transition in
{set ops}

B is applicable because Beliefs contains only

B(n) entities and Act does not contains Checkl entities. Similarly,
act T

B

is not applicable.
act check

B is applicable (lhs Fig. 10a), resulting in a
new Checkl in Beliefs (rhs Fig. 10a). No other transitions are applicable.

Step 2
{set ops}

B*. We now have state

Beliefs.((Jb1K | . . . | JbnK) | Checkl.JϕK) ‖ Reduce.Act.(Pre.JϕK | Add.Jφ+K |
Del.Jφ−K | CheckResl.1)

Transitions in
{set ops}

B* are applicable and there are three cases to
consider (induction and 2 base cases: lhs of Figs. 9a, 9b and 9c). No
other transitions are applicable. Together, these transitions reduce in size
the number of beliefs to be checked or remove Checkl, resulting in a finite
sequence. In detail:

Case check T(n). There is at least one B(n) in Checkl, and a matching

B(n) in Jb1K | . . . | JbnK and so
check T(n)

B applies, which reduces
the number of children of Checkl by 1.

Case check F. There is at least one B(n) in Checkl but no match in
Jb1K | . . . | JbnK. This case cannot occur because the act precondition
ϕ holds.

Case check end. Checkl is empty, in which case
check end

B applies, re-
sulting in the removal of Checkl.

Step 3
act T

B. We now have state

Beliefs.(Jb1K | . . . | JbnK) ‖ Reduce.Act.(Pre.JϕK | Add.Jφ+K | Del.Jφ−K |
CheckResl.T).

Transitions in
{set ops}

B are not applicable, but
act T

B is applicable,
since CheckResl.T is present and the precondition holds.

Step 4
{set ops}

B. We now have state

Beliefs.((Jb1K | . . . | JbnK) | Add.Jφ+K | Del.Jφ−K) ‖ 1.

Similar to step 2, only transitions in
{set ops}

B apply, in this case a
finite number of times until Add and Del are removed. No new branching
is introduced, and we are left with bigraph Beliefs.(JbiK | . . . | JbjK) ‖ 1,

as required, (recall JnilK def
= 1). B′ = JbiK | . . . | JbjK is B with the belief

additions/deletions performed.

24

PlanSet

Plans

p

PlanSet PlanSet

Plans

p

I

Figure 11: reduce event.

We have discussed what happens when the pre-condition of an action holds.
However, it is not explicit in Can semantics what should be done in the case the
pre-condition check fails. From the perspective of an AND/OR tree, as actions
are always under AND nodes, the failure needs to be propagated upwards in
order to enable failure recovery to take place. As introduced in Section 5.2, the
entity ReduceF is provided to denote explicitly the reduction failure. Therefore,
we have the reaction act F to report the failure, given in Fig. 10b. Reducing
to ReduceF enables checking of the premise 〈B, act〉9 (as is done implicitly in
Can semantics). Once a failure is reported, other reaction rules can be triggered
to, for example, recover from the failure.

5.3.2. Plan Selection

Recall that the agent responds to an event by selecting an applicable plan
from a set of pre-defined plans. The following two derivation rules specify the
plan selection. The first rule event converts an event to the set of plans that
respond to that event (i.e. relevant plans), while the second rule select chooses
an applicable plan (if exists) from the set of relevant plans.

The reaction rule corresponding to the derivation rule event is depicted
in Fig. 11. As the syntax encoding uses links to connect an event Ee to its set of
relevant plans PlanSete, we can encode the derivation rule event with a single
reaction rule by replacing the event entity Ee with PlanSete as shown in Fig. 11.

Lemma 2. (Faithfulness of event) event has a corresponding finite reaction
sequence JJ〈B, e〉KK B+J〈B, e : (| ∆ |)〉K.

Proof. B+ corresponds to
reduce event

B. Trivial.

The derivation rule select is modelled in a similar style to how to exe-
cute an action, beginning with the pre-condition check against the belief base
before selecting an appropriate plan (if one exists). In detail, the reaction
rule select plan check (in Fig. 12a) finds a plan that has not yet had the
pre-conditions checked—facilitated via an automatically-added auxiliary entity
CheckToken that records if a plan has already been considered—and initiates
an operation to check the plan pre-condition. To ensure the automatic addition
of the entity CheckToken to all Plan entities within the Plans perspective, an
additional reaction rule is executed once at the start of a model execution to
update the plan library. This is an implementation detail, we do not add the

25

Beliefs Pre

Plan

PlanSet

e

Check

Beliefs
Pre

Plan

PlanSet

e

I

(a) select plan check

Pre PB

Plan

PlanSet

e

PlanSet

Cons

Try

e

I

(b) select plan T

PlanSet

e

9
e

if 〈−, , ↓〉, 〈−, , ↓〉

I

(c) select plan F

Plan

PlanSet

Cons

Try

e

Plan

PlanSet

Cons

Try

e

I

(d) reset planset

Figure 12: Reactions for plan selection.

tokens directly to the syntax encoding in the section Section 3. After checking
the pre-condition of a plan is true, the reaction rule select plan T (in Fig. 12b)
removes the selected applicable plan from the set of relevant plans, and converts
it into B form, keeping the rest of plans as backups.

Lemma 3. (Faithfulness of select) When the set of relevant plans (|∆|) is non-
empty and contains at least one applicable plan for a given event, select has a
corresponding finite reaction sequence JJ〈B, e : (|∆|)〉KK B+J〈B, P B e : (∆ \ {ϕ :
P})〉K.

Proof. Let
select and check

B =
select plan check

B
{set ops}

B
∗

be the sequence
of rules that selects and tests the pre-condition for a plan. B+ has form
select and check

B
+ select plan T

B. We assume at least one applicable plan. The

proof is similar to Lemma 1; in this case the transitions in
select and check

B
reduce the number of plans to be checked until an applicable plan is selected.

Transitions in
select and check

B only introduce auxiliary controls, so no other
transitions are enabled.

If no plan is applicable (a failure), the reaction rule select plan F (in Fig. 12c)
propagates a ReduceF up the tree. We use a conditional rule to ensure the plan
selection only fails if all plans have been checked (or there are no plans), i.e. when

26

Cons

Seq

Cons

Seq

I

(a) reduce seq

Cons

Seq

I

(b) seq succ

9
Cons

Seq

9I

(c) seq fail

Figure 13: Reactions for sequencing with priorities: reduce seq < {seq succ, sec fail}

there are no CheckToken entities left, and no plan that was checked is applicable.
Finally, an auxiliary reaction rule reset planset (Fig. 12d) ensures that after
plan selection, the remaining unchosen (but checked) plans are re-assigned the
control CheckToken to allow the plan to be checked again if failure recovery is
required.

5.3.3. Tree Reductions

The remaining Can intention-level derivation rules specify how the AND/OR
tree should be explored.

The derivation rules ; and ;> describe how to progress the sequencing of
P1;P2. The derivation rule ; is encoded by the reaction rule reduce seq (Fig. 13a)
that pushes reduction into the first child of a sequence. The use of a site (i.e. an
abstraction) in bigraphs allows this single rule to handle any type of program P .
In more detail, reduce seq is a generalisation of seq succ and seq fail. For
example, if we get remove id under the control Seq (not id under Cons) on the
left-hand side of reaction rule reduce seq, we get the reaction rule seq succ.
Therefore, we enforce a priority ordering on the reaction rules as given in Fig. 13
to ensure that the special cases are applied only when needed.

Lemma 4. (Faithfulness of ;) ; has a corresponding finite reaction sequence
JJ〈B, P1;P2〉KK B+J〈B′, P ′1;P2〉K.

Proof. The initial state is JBK ‖ Reduce.(Seq.JP1K | Cons.JP2K). Assume 〈B, P1〉 →
〈B′, P ′1〉. P1 can reduce so it cannot be nil, thus the rule reduce seq applies
resulting in bigraph JBK ‖ (Seq.Reduce.JP1K | Cons.JP2K), which matches bi-
graph JJ〈B, P1〉KK = JBK ‖ Reduce.JP1K. P1 is then reduced to P ′1, with beliefs B′,
(using assumption) and the result is state JB′K ‖ (Seq.JP ′1K | Cons.JP2K), which
is equivalent to J〈B′, P ′1;P2〉K. No other transitions are possible.

The derivation rule ;> is encoded using the reaction rule seq succ (Fig. 13)
that matches in the case the first part of the sequence completed successfully,
i.e. JnilK = 1. As specified in the derivation rule in Can, we not only make the
children under Cons the new current program, but we also (try to) reduce it
immediately.

Lemma 5. (Faithfulness of ;>) ;> has a corresponding finite reaction sequence
JJ〈B, nil;P2〉KK B+J〈B′, P ′2〉K.

27

Cons

Try

Cons

Try

I

(a) try seq

Cons

Try

I

(b) try succ

9
Cons

Try

I

(c) try failure

Figure 14: Reactions for recovery with priorities: try seq < {try succ, try failure}.

Proof. The initial state is JBK ‖ Reduce.(Seq.JnilK | Cons.JP2K). Assume 〈B, P2〉 →
〈B′, P ′2〉. The rule seq succ applies, resulting in JJ〈B, P2〉KK, which, by the as-
sumption, is reduced to P ′2, with beliefs B′, i.e. J〈B′, P ′2〉K. No other transitions
are possible.

5.3.4. Failure Recovery

If we cannot reduce a sequence, then a failure is propagated up the tree
through the reaction rule seq fail (Fig. 13c). It is important that the reaction
rule seq fail, and later failure cases, do not require the left-hand entity to
be under a Reduce. This means a reaction can be applied as soon as a failure
is discovered, rather than the next time the agent attempts to advance the
intention. This matches the Can semantics that handle failure of intention
immediately (B⊥ in Fig. 5). If no backup plans apply e.g. there are no plans left
to select, the failure is pushed upwards through the reaction rule select plan F

(Fig. 12c). in this case, the transition labelled reaction rule try failure does
not apply as the Cons entity has been removed. As with sequencing, a priority
order is required since try seq generalises the other reactions.

We now consider the derivation rules B;, B>, and B⊥ that relate to failure
recovery. The reaction rule try seq (Fig. 14a) encodes the derivation rule B; by
pushing reduction into the left hand side of the B operator, if no failure occurs.

Lemma 6. (Faithfulness of B;) B; has a corresponding finite reaction sequence
JJ〈B, P1 B P2〉KK B+J〈B′, P ′1 B P2〉K.

Proof. The argument is similar to Lemma 4, starting from initial state JBK ‖
Reduce.(Try.JP1K | Cons.JP2K) and transition from Fig. 14a.

If the selected plan was executed successfully, the reaction rule try succ

(in Fig. 14b) encodes the derivation rule B> to propagate success up-the-tree
by removing the B structure.

Lemma 7. (Faithfulness of B>) B>, has a corresponding finite reaction se-
quence JJ〈B, nil B P2〉KK B+J〈B, nil〉K.

Proof. B+ corresponds to
try succ

B. Trivial.

Finally, the transition labelled try failure (Fig. 14c) encodes the derivation
rule B⊥. This is the first instance where ReduceF is used as a premise to denote
a program that failed to progress. To recover, the failed program is deleted and

28

Desires

e

Intentions Desires Intent

Intentions

e

I

(a) A event

Intent Intent

if 〈−, , ↓〉

I

(b) intention step

9
Intent

I

(c) intention done F

Intent

I

(d) intention done succ

Figure 15: Agent level reactions with priorities: {A event, intention step} <
{intention done F, intention done succ}.

the agent tries to reduce the right-hand side of B (i.e. by choosing from the
remaining the set of relevant plans).

Lemma 8. (Faithfulness of B⊥) B⊥ has a corresponding finite reaction se-
quence JJ〈B, P1 B P2〉KK B+J〈B′, P ′2〉K when 〈B,P1〉9.

Proof. Assume 〈B, P1〉 9, and 〈B, P2〉 → 〈B′, P ′2〉. The initial state is JBK ‖
Reduce.Try.(JP1K | Cons.JP2K). Rule try seq (Fig. 14a) applies (as in Lemma
6), however, since 〈B, P1〉 9, P1 must reduce to ReduceF. Rule try failure

then applies, resulting in a bigraph matching JJ〈B, P2〉KK. Through the second
assumption, this is reduced to P ′2, with beliefs B′. No other transitions are
possible.

5.3.5. Agent Steps

To complete the core semantics of Can, we now encode the agent-level
derivation rules: Aevent, Astep, and Aupdate.

The derivation rule Aevent allows the agent to respond to an external event
by adopting it in the intention base. This is encoded by reaction rule A event

(Fig. 15a) that simply moves the event from a desire to an intention.

Lemma 9. (Faithfulness of Aevent) Aevent has a corresponding finite reaction
sequence J〈Ee ∪ {en},B,Γ〉K B+J〈Ee,B′,Γ ∪ {en}〉K.

Proof. B+ corresponds to
A event

B. Trivial.

The derivation rule Astep allows the agent to execute a given intention by one
reduction step. This is encoded with reaction rule intention step (in Fig. 15b)
that pushes a reduction into an intention (down the tree) if it is not already
being reduced. This rule introduces the reduction form JJ·KK to an intention.

If the reduction is successful, we are left with a new updated P ′ (and B′)
as required. Unlike the Can derivation rule that removes the old intention
and replaces it with a modified intention, ours is updated in-place. Multiple
intentions can be reduced concurrently, e.g. intention step can be applied to
two different intentions in an interleaved fashion.

29

Lemma 10. (Faithfulness of Astep) Astep has a corresponding finite reaction
sequence J〈Ee,B,Γ ∪ {P}〉K B+J〈Ee,B′,Γ ∪ {P ′}〉K when 〈B, P 〉 → 〈B′, P ′〉.
Proof. Assume JJ〈B, P 〉KK B+J〈B′, P ′〉K and no intention is currently being re-
duced. By rule intention step (Fig. 15b), P transitions to Intent.Reduce.P .
This matches JJ〈B, P 〉KK, which by assumption, reduces to J〈B′, P ′〉K. This gives
Intent.JP ′K, with beliefs B′. No other transitions are possible.

The derivation rule Aupdate is encoded by reaction rules intention done F

(Fig. 15c) and intention done succ (Fig. 15d). The reaction rule intention done F

handles the case where there was a failure to progress an intention. That is,
if after pushing a reduction into the intention (via intention step), we even-
tually consider Intent.ReduceF. The reaction rule intention done succ is a
special case of intention done F for when a intention completed successfully
(Intent.1). As the Aupdate rule only applies on failure to reduce an intention,
intention done succ matches the form where we have tried to reduce an inten-
tion with the nil program inside. Importantly, this means that if an intention
finishes an execution with P = nil, it is not until the next attempt to reduce it
that Aupdate is applied. This mirrors the Can semantics that cannot tell if an
intention is removed because it is finished, or if it failed.

Lemma 11. (Faithfulness of Aupdate) Aupdate has a corresponding finite reac-
tion sequence J〈Ee,B,Γ ∪ {P}〉K B+J〈Ee,B′,Γ〉K when 〈B, P 〉9.

Proof. Two cases.

Case 1. If 〈B, P 〉 9, then P must eventually reduce to a state that allows

Intent.ReduceF to be matched, and
intention done F

B applies, completing
the reaction sequence.

Case 2. If P = nil, then B+ corresponds to
intention step

B
intention done succ

B.
No rule can reduce Reduce.1 further.

To ensure agent-level transitions apply only when there is no intention cur-
rently being reduced (i.e. no intention-level transitions are being applied), both
intention step and A event are in the lowest priority class. As intention step

is a generalisation of intention done F and intention done succ, the latter
two have higher priority class than intention step (and A event).

5.4. Correctness
We can now give the main theorem, which states that the Can derivation

rules can be encoded by a corresponding finite sequence of reaction rules.

Theorem 1 (Faithfulness). For each Can step 〈Ee,B,Γ〉 ⇒ 〈E′e,B′,Γ′〉 there
exists a corresponding finite sequence of reactions such that

J〈Ee,B,Γ〉K B
+
J〈E′e,B′,Γ′〉K .

Proof. Follows from Lemmas 1–11 above.

30

5.5. Reduction Example

To show how reduction works, in particular how failures are propagated
through the AND/OR tree, we re-visit our running conference travelling exam-
ple to address external event e1. Consider the following configuration:

Agent = 〈B = {b1, b2, b6, b7}, P = e1〉

This configuration has the current belief base B and current intention P = e1.
The bigraph (omitting desires and plan library) is:

JAgentK = Beliefs.(B(1) | B(2) | B(6) | B(7)) ‖ Intent.Ee1

The detailed reduction step is given in Fig. 16. For succinctness, whenever
appropriate, we use the mapping function to denote the part of bigraph en-
coding e.g. JPl2K while keeping the belief base implicitly as the background.
The top-side of the reaction rule indicates the reaction rule that is applied and
the bottom-side of the reaction rule indicates the result of application of the
reaction rule, with line number in the beginning of each line. A short com-
mentary is as follows. In line (1), the agent starts with an event to address.
The reaction rule intention step introduces the entity Reduce. Lines (2) and
(3) show that to reduce an event, the event is replaced with its relevant plans.
Reaction rule intention step once again introduces Reduce for selection of an
applicable plan. Lines (4) to (6) shows the successful selection of an applica-
ble plan, plan Pl1. From line (8) to line (9), the reaction rule try seq pushes
reduction in the left-hand side of the B symbol, and from line (9) to line (10),
the reaction rule reduce seq pushes the reduction into the first child of a se-
quence. Lines (10) to (12) shows the execution of an action. In this case, we
can see that the pre-condition of the action is not met, thus producing the en-
tity ReduceF. As a consequence, this triggers failure recovery by deleting the
failed program. Finally, lines (13) to (16) provides the successful re-selection of
another applicable plan, namely plan Pl2.

6. Extended Features

The full Can language also supports concurrency within plan-bodies, and
declarative goals which allow an event to be repeatedly pursued until specified
success/failure conditions holds. We now show how these features are encoded
as bigraph reaction rules.

6.1. Concurrency

The Can semantics for concurrency are given in Fig. 17. They allow two
branches within a single AND/OR tree to be reduced concurrently. For exam-
ple, concurrency allows an agent to pursue two sub-tasks (i.e. two sub-events)
but the ordering does not matter as long as they are all achieved eventually.
The concurrency construct does not allow true concurrency, e.g. two branching
reducing at the exact same time (same agent step), instead one of the branches
is chosen and reduced at agent each step, i.e. in an interleaving manner. An

31

(1) Intent.Ee1

intention step
B

(2) Intent.Reduce.Ee1

reduce event
B

(3) Intent.PlanSete1 .(Plan.(Pre.Jϕ1K | PB.Seq.(Jact1K | Cons.Jact2K)) | JPl2K)
intention step

B

(4) Intent.Reduce.PlanSete1 .(Plan.(Pre.Jϕ1K | PB.Seq.(Jact1K | Cons.Jact2K)) | JPl2K)
select plan check

B

(5) Intent.Reduce.PlanSete1 .(Plan.(CheckRes.1 | Pre.Jϕ1K | PB.Seq.(Jact1K | Cons.Jact2K)) | JPl2K)
set ops

B
∗

(6) Intent.Reduce.PlanSete1 .(Plan.(CheckRes.T | Pre.Jϕ1K | PB.Seq.(Jact1K | Cons.Jact2K)) | JPl2K)
select plan T

B

(7) Intent.Try.(Seq.(Jact1K | Cons.Jact2K) | Cons.PlanSete1 .JPl2K)
intention step

B

(8) Intent.Reduce.Try.(Seq.(Jact1K | Cons.Jact2K) | Cons.PlanSete1 .JPl2K)
try seq

B

(9) Intent.Try.(Reduce.Seq.(Jact1K | Cons.Jact2K) | Cons.PlanSete1 .JPl2K)
reduce seq

B

(10) Intent.Try.(Seq.(Reduce.Act.(Pre.B(3) | Add.B(4) | Del.1) | Cons.Jact2K) | Cons.PlanSete1 .JPl2K)
act check

B

(11) Intent.Try.(Seq.(Reduce.Act.(CheckRes.1 | Pre.B(3) | Add.B(4) | Del.1) | Cons.Jact2K) | Cons.PlanSete1 .JPl2K)
set ops

B
∗

(12) Intent.Try.(Seq.(Reduce.Act.(CheckRes.F | Pre.B(3) | Add.B(4) | Del.1) | Cons.Jact2K) | Cons.PlanSete1 .JPl2K)
act F

B(as B 2 b3)

(13) Intent.Try.(ReduceF | Cons.PlanSete1 .JPl2K))
try failure

B

(14) Intent.Reduce.PlanSete1 .JPl2K
select plan check

B

(15) Intent.Reduce.PlanSete1 .Plan.(CheckRes.1 | Pre.Jϕ2K | PB.Seq.(Jact3K | Cons.Seq.(Je2K | Cons.Jact4K)))
select plan T

B

(16) Intent.Try.(Seq.(Jact3K | Cons.Seq.(Je2K | Cons.Jact4K)) | Cons.PlanSete1 .1)

Figure 16: Example bigraph reduction of event e1 from Table 1.

32

〈B, P1〉 → 〈B′, P ′1〉
〈B, (P1‖P2)〉 → 〈B′, (P ′1‖P2)〉

‖1

〈B, P2〉 → 〈B′, P ′2〉
〈B, (P1‖P2)〉 → 〈B′, (P1‖P ′2)〉

‖2

〈B, (nil‖nil)〉 → 〈B, nil〉
‖>

Figure 17: Can concurrency rules.

L

Conc

L

Conc

I

(a) conc L

R

Conc

R

Conc

I

(b) conc R

R L

Conc

R L

Conc

I

(c) conc nil L

L R

Conc

L R

Conc

I

(d) conc nil R

L R

Conc

ConcI

(e) conc suc

9
L

Conc

9I

(f) conc fail L

9
R

Conc

9I

(g) conc fail R

Figure 18: Reactions for concurrency with priorities: {conc L, conc R} <
{conc nil L, conc nil R} < {conc suc, conc fail L, con fail R}.

33

advantage of this approach is that all possible interleavings can be checked for
correctness.

Two reaction rules conc L (Fig. 18a), and conc R (Fig. 18b) encode concur-
rency. As they have the same priority, these rules specify that reduction can be
pushed down either the left or right branch.

Lemma 12. (Faithfulness of ‖1 and ‖2) ‖1 and ‖2 have a corresponding finite re-
action sequence JJ〈B, P1 ‖ P2〉KK B+J〈B′, P ′1 ‖ P2〉K and JJ〈B, P1 ‖ P2〉KK B+J〈B′, P1 ‖
P ′2〉K, respectively.

Proof. Consider ‖1, and assume 〈B, P1〉 → 〈B′, P ′1〉, there are two cases:

Case 1. If P2 = nil then 〈B, P2〉 9. The reaction rule conc nil L in Fig. 18c
applies, resulting in Reduce.JP1K, and by our assumption JJ〈B, P1〉KK re-
duces.

Case 2. If P1 6= nil then the reaction rule conc L applies resulting in Reduce.JP1K,
and by our assumption JJ〈B, P1〉KK reduces.

‖2 is considered in a similar way.

Concurrent programs are considered to have completed successfully when
both branches complete, i.e. reduced to nil. The reaction rule conc suc, given
in Fig. 18e, handles the completion of concurrent programs.

Lemma 13. (Faithfulness of ‖>) ‖> has a corresponding finite reaction se-
quence JJ〈B, nil ‖ nil〉KK B+J〈B′, nil〉K.

Proof. B+ corresponds to
conc suc

B. Trivial.

In the case of failures, additional reaction rules conc fail L (Fig. 18f) and
conc fail R (Fig. 18g) propagate failure up-the-tree if either of the two con-
current branches results in a failure. Importantly, we fail as soon one branch
fails, rather than waiting for the other branch to complete (either successfully
or with failure).

As before, a priority ordering on the reaction rules is required as some re-
action rules generalise others, e.g. the reaction rule conc R would also match
reaction rule conc succ.

6.2. Declarative Goals

Declarative goals allow an agent to respond persistently to event e until either
the success or failure conditions are met. The Can semantics for declarative
goals are given in Fig. 19. The derivation rules Gs and Gf deal with the cases
when either the success condition ϕs or the failure condition ϕf become true.
The derivation rule Ginit initialises persistence by setting the program in the
declarative goal to be P B P , i.e. if P fails try P again. The derivation rule G;

takes care of performing a single step on an already initialised program. Finally,
the derivation rule GB re-starts the original program if the current program has
finished or got blocked (when neither ϕs nor ϕf becomes true).

34

B |= ϕs

〈B, goal(ϕs,P, ϕf)〉 → 〈B, nil〉
Gs

B |= ϕf

〈B, goal(ϕs,P, ϕf)〉 → 〈B, ?false〉
Gf

P 6= P1 B P2 B 2 ϕs B 2 ϕf

〈B, goal(ϕs,P, ϕf)〉 → 〈B, goal(ϕs,P B P, ϕf)〉
Ginit

B 2 ϕs B 2 ϕf 〈B, P1〉 → 〈B′, P ′1〉
〈B, goal(ϕs, P1 B P2, ϕf)〉 → 〈B′, goal(ϕs, P ′1 B P2, ϕf)〉

G;

B 2 ϕs B 2 ϕf 〈B, P1〉9
〈B, goal(ϕs, P1 B P2, ϕf)〉 → 〈B, goal(ϕs, P2 B P2, ϕf)〉

GB

Figure 19: Derivation rules for declarative goals.

To reduce the number of reaction rules for encoding declarative goals, we
check both success and failure conditions simultaneously through reaction rule
goal check (Fig. 20a). As before, the entailment machinery provides atomic
checks in both cases. Afterwards the reaction rules goal suc (Fig. 20b) and
goal fail (Fig. 20c) determine if the goal should complete (either successfully
or with failure). Strictly speaking it is possible both success/failure conditions
hold simultaneously, however in practice it is usually assumed success/failure
conditions are mutually exclusive.

An interesting feature of the Can derivation rule Gf is the use of ?false in
the resulting state. This plays a similar role to ReduceF by explicitly creating an
irreducible term to trigger further handling up-the-tree. Recall that the belief
entailment in Can derivation rule ? can be regarded as the special case of the
Can derivation rule act (Eq. (21)).

Therefore, we simply let goal fail reduce to an Act with a false precondi-
tion (that always fails) to indicate a failure.

Lemma 14. (Faithfulness of Gs) Gs has a corresponding finite reaction se-
quence JJ〈B, goal(ϕs, P, ϕf)〉KK B+J〈B, nil〉K.

Proof. B+ corresponds to
goal check

B
{set ops}

B* goal suc
B. The argument

is similar to Lemma 1.

Lemma 15. (Faithfulness of Gf) Gf has a corresponding finite reaction se-
quence JJ〈B, goal(ϕs, P, ϕf)〉KK B+J〈B, ?false〉K.

Proof. B+ corresponds to
goal check

B
{set ops}

B* goal fail
B. The argu-

ment is similar to Lemma 1.

Similar to the derivation rule B;, the derivation rule G; reduces the left-
branch of the symbol B. The reaction goal reduce (Fig. 20d) pushes the re-
duction down the left-branch. To ensure the ordering between rules Gs, Gf ,
and G;, we explicitly match only on the case that the checks have already been
performed. In other words, the goal will only be pursued if neither the success
or failure condition holds.

35

Beliefs SC FC

Goal

CheckCheck

Beliefs
SC FC

Goal

I

(a) goal check

SC

Goal

I

(b) goal suc

FC

Goal

false

Pre Add Del

Act

I

(c) goal fail

SC Cons

Try

FC

Goal

SC Cons

Try

FC

Goal

I

(d) goal reduce

SC

9
Cons

Try

FC

Goal

SC Cons

Try

FC

Goal

I

(e) goal persist

SC Cons

Try

FC

Goal

SC Cons

Try

FC

Goal

I

(f) goal persist nil

SC FC

Goal

SC Cons

Try

FC

Goal

I

(g) goal init

Figure 20: Reactions for declarative goals with priorities: goal init <
{goal reduce, goal check, goal fail, goal suc} < {goal persist, goal persist nil}.

36

Lemma 16. (Faithfulness of G;) G; has a corresponding finite reaction sequence
JJ〈B, goal(ϕs, P1 B P2, ϕf)〉KK B+J〈B′, goal(ϕs, P ′1 B P2, ϕf)〉K.

Proof. Similar to Lemma 6. Assume 〈B, P1〉 B+〈B′, P ′1〉. The initial state has
form JBK ‖ Reduce.Goal.(SC.JϕsK | FC.Jϕf K | Try.(JP1K | Cons.JP2K)) and so rule
goal reduce applies, which allows reduction of P1 to P ′1, with updated B′.

The derivation rule GB likewise is very similar to the derivation rule B⊥. Un-
like in rule B⊥, however, in rule GB we keep the B structure in-place and repli-
cate P2, thus giving the declarative goals their persistence. The Can reaction
rule goal persist (Fig. 20e) encodes this case with the match of ReduceF ensur-
ing the premise 〈B, P1〉9 holds. Through duplication, we decouple the failure
of the plan execution from the failure of the goal (as specified by success/failure
conditions). Finally, an additional reaction goal persist nil (Fig. 20f) enables
the agent to persist even in the case where the program executed successfully
(but the goal success/failure did not hold).

Lemma 17. (Faithfulness of GB) GB has a corresponding finite reaction se-
quence JJ〈B, goal(ϕs, P1 B P2, ϕf)〉KK B+J〈B, goal(ϕs, P2 B P2, ϕf)〉K.

Proof. Two cases.

Case 1. If P1 = nil then B+ corresponds to
goal persist nil

B. Trivial.

Case 2. If 〈B, P1〉9, then P1 must eventually reduce to ReduceF. Rule
goal persist

B
applies giving a result in the form J〈B, goal(ϕs, P2 . P2, ϕf)〉K as required.

The derivation rule Ginit is encoded through reaction goal init that sets
up the required B structure. To ensure this is applied at the right time, we have
priority classes with goal init < {goal persist, goal reduce} to ensure the
premise P 6= P1 B P2 holds.

Lemma 18. (Faithfulness of Ginit) Ginit has a corresponding finite reaction
sequence JJ〈B, goal(ϕs, P, ϕf)〉KK B+J〈B, goal(ϕs, P B P,ϕf)〉K.

Proof. B+ corresponds to
goal init

B. Priority classes of reactions ensure
P 6= P1 B P2, as required.

For declarative goals, due to persistence, there is no rule that propagates
failures upwards7.

As with the previous lemmas, these extended features can be integrated
easily into Theorem 1 to prove the extended semantics is also faithful.

7Meeting the failure conditions does eventually lead to failure but this requires additional
steps.

37

Theorem 2 (Faithfulness (extended)). For each Can step (including features
of concurrency and declarative goal) 〈Ee,B,Γ〉 ⇒ 〈E′e,B′,Γ′〉 there exists a
corresponding finite sequence of reactions such that

J〈Ee,B,Γ〉K B
+
J〈E′e,B′,Γ′〉K .

Proof. Follows from Lemmas 1–18.

7. UAVs Examples

To illustrate our modelling and verification framework, we consider three
examples taken from UAV surveillance and retrieval mission systems. The ex-
amples cover persistent patrol, concurrent sensing, and contingency handling in
object retrieval and highlight the three distinguishing features of Can: declar-
ative goals, concurrency, and failure recovery.

7.1. Persistent Patrol

BDI Agent Design for Persistent Patrol

1 // Initial beliefs

2 ¬battery low, ¬harsh weather

3 // External events

4 e init1

5 // Plan library

6 e init1 : true <- goal(false, e patrol task, false)

7 e patrol task : true <- goal(sc, e patrol, false); e pause

8 e patrol : true <- patrol

9 e pause : battery low <- request; wait; charge

10 e pause : harsh weather<- activate parking

where sc = harsh weather ∨ battery low.

Bigraph Encoding

big persistent patrol =

Beliefs.(B(1) | B(2)) ‖ Desires.Ee1 ‖ Intentions.1

‖ Plans.(

PlanSete init1.(Plan.(Pre.1 | PB.Goal.(SC.False | Ee task1 | FC.False)))

| PlanSete patrol task.(Plan.(Pre.1 | PB.(Seq.(Goal.(SC.B(3) | Ee patrol | FC.False) | Cons.Ee pause))))

| PlanSete patrol.(Plan.(Pre.1 | PB.JpatrolK))
| PlanSete pause.(

| Plan.(Pre.B(4) | PB.(Seq.(JrequestK | Cons.(Seq.(JwaitK | Cons.JchargeK)))))
| Plan.(Pre.B(5) | PB.Jactivate parkingK)))

where B(1) = ¬battery low, B(2) = ¬harsh weather, B(3) = sc,

B(4) = battery low, and B(5) = harsh weather.

Figure 21: Persistent patrol: BDI agent design and bigraph encoding.

UAVs are used in surveillance operations, with a UAV patrolling a pre-
defined area to identify objects of interest. The UAV can request refuelling

38

BDI Agent Design for Concurrent Sensing in One Intention

1 // Initial beliefs

2 ram free, storage free

3 // External events

4 e init2

5 // Plan library

6 e init2 : true <- e dust|| e photo

7 e dust : ram free ∧ storage free <- collect dust; analyse; send back

8 e photo : ram free ∧ storage free <- focus camera; save shots; zip shots

Bigraph Encoding

big concurrent sensing =

Beliefs.(B(6) | B(7)) ‖ Desires.Ee init2 ‖ Intentions.1

‖ Plans.(

PlanSete init2.Plan.(Pre.1 | PB.(Conc.(L.Ee dust | R.Ee photo)))

| PlanSete dust.Plan.(Pre.(B(6) | B(7)) | PB.(Seq.(Jcollect dustK | Cons.(Seq.(JanalyseK | Cons.Jsend backK)))))

| PlanSete photo.Plan.(Pre.(B(6) | B7) | PB.(Seq.(Jfocus cameraK | Cons.(Seq.(Jsave shotsK | Cons.Jzip shotsK))))))
where B(6) = ram free and B(7) = storage free.

Figure 22: Concurrent sensing in one intention: BDI agent design and bigraph encoding.

when the battery is low, and parking mode should be activated when there is
harsh weather.

The agent design and its corresponding bigraph encoding is in Fig. 21. The
external event e init1 (line 4) initiates persistent patrol. There is only one plan
(line 6) relevant to e init1, whose context is always true (represented by an
empty region bigraph 1), thus always applicable, and whose plan-body is declar-
ative goal goal(false,e patrol task,false). The event e patrol task is
persistent because the success and failure conditions never hold, that is, we
have an infinite process executing e patrol task. In practice, we require some
flexibility in case of low battery or harsh weather. The plan for e patrol task

(line 7) indicates the patrol task may need to be paused (i.e. followed by the
event e pause), when the success condition is true, i.e. when battery low or
harsh weather holds (added to the belief base). If the pause is required and
after achieving event e pause (lines 9-10), the event e patrol task will be pur-
sued again. For succinct presentation, we note that the encoding of action such
as patrol and wait are not shown, but can be found in our model [30].

7.2. Concurrent Sensing in One Intention

UAVs may also be used for sensing tasks. In this case we consider a UAV that
analyses dust particles, and performs aerial photo collection, e.g. for analysis in
post volcanic eruptions.

An agent design to achieve this concurrent sensing task is in Fig. 22. The
external event e init2 (line 4) initiates the mission and the relevant plan (line
6) has tasks for dust monitoring (e dust) and photo collection (e photo) as
the concurrent programs in the plan-body. The on-board dust sensors require

39

BDI Agent Design for Concurrent Sensing with Two Intentions

1 // Initial beliefs

2 ram free, storage free

3 // External events

4 e dust, e photo

5 // Plan library

6 e dust : ram free ∧ storage free <- collect dust; analyse; send back

7 e photo : ram free ∧ storage free <- focus camera; save shots; zip shots

Bigraph Encoding

big concurrent sensing =

Beliefs.(B(6) | B(7)) ‖ Desires.(Ee dust | Ee photo) ‖ Intentions.1

‖ Plans.(

PlanSete dust.Plan.(Pre.(B(6) | B(7)) | PB.(Seq.(Jcollect dustK | Cons.(Seq.(JanalyseK | Cons.Jsend backK)))))

| PlanSete photo.Plan.(Pre.(B(6) | B7) | PB.(Seq.(Jfocus cameraK | Cons.(Seq.(Jsave shotsK | Cons.Jzip shotsK))))))
where B(6) = ram free and B(7) = storage free.

Figure 23: Concurrent sensing in two intentions: BDI agent design and bigraph encoding.

high-speed RAM to collect and analyse the data, hence condition ram free,
and when the analysis is complete, results are written to storage (hence con-
dition storage free), and sent back to the control. Similarly, to collect aerial
photos, the UAV reserves and focuses the camera array (focus camera), then
camera shots are compressed (zip shot), and sent back. Recall, for successful
completion, both concurrent tasks have to complete successfully.

7.3. Concurrent Sensing in Two Intentions

In Can, an agent can execute multiple intentions concurrently in an inter-
leaved manner. As an example of concurrency between intentions, we revise the
task of concurrent sensing to use two different intentions. The design of this sce-
nario is given in Fig. 23. We see that, compared to the agent design in Fig. 22,
we now use two separate external events—e dust and e photo—resulting in two
intentions. We reflect on the inability of verifying multiple intentions in Can,
and detail the difference of concurrency within an intention and concurrency
among multiple intentions in Section 8.

7.4. Contingency Handling for a Retrieve Task

UAVs may be used for object retrieval tasks, e.g. package delivery. An agent
design for retrieval is in Fig. 24. It has one (retrieve) task, initiated by external
event e retrv (line 4), which may be affected by engine or sensor malfunction,
Event e retrv is handled by five relevant plans available (lines 6 to 10). The
first 3 plans provide different flight paths after take-off, in which case the failure
condition is (subsequent) engine or sensor malfunction. The last 2 plans (line 9
and 10) indicate safe recovery in the event of engine or sensor malfunction.

40

BDI Agent Design of Retrieve Task

1 // Initial beliefs

2 ¬sensor malfunc, ¬engine malfunc

3 // External events

4 e retrv

5 // Plan library

6 e retrv : ϕ <- take off; goal(at destination, e path1, fc); retrieve

7 e retrv : ϕ <- take off; goal(at destination, e path2, fc); retrieve

8 e retrv : ϕ <- take off; goal(at destination, e path3, fc); retrieve

9 e retrv : sensor malfunc <- return base

10 e retrv : engine malfunc <- activate parking; send GPS

11 e path1 : true <- navigate path 1

12 e path2 : true <- navigate path 2

13 e path3 : true <- navigate path 3

where ϕ = ¬sensor malfunc ∧ ¬engine malfunc, fc = sensor malfunc ∨ engine malfunc

Bigraph Encoding

big retrieve task =

Beliefs.(B(8) | B(9)) ‖ Desires.Ee retrv ‖ Intentions.1
‖ Plans.(
PlanSete retrv .(

Plan.(Pre .(B(8) | B(9)) | PB.(Seq .(Jtake off K | Cons .(Seq .(Goal .(SC .B(10) | Ee path1 | FC .B11) | Cons .JretrieveK)))))
| Plan.(Pre.(B(8) | B(9)) | PB.(Seq.(Jtake off K | Cons.(Seq.(Goal.(SC.B(10)) | Ee path2 | FC.B(11) | Cons.JretrieveK)))))
| Plan.(Pre.(B(8) | B(9)) | PB.(Seq.(Jtake off K | Cons.(Seq.(Goal.(SC.B(10) | Ee path3 | FC.B(11)) | Cons.JretrieveK)))))
| Plan.(Pre.B(12)) | PB.Jreturn baseK)
| Plan.(Pre.B(13)) | PB.(Seq.(Jactivate parkingK | Cons.Jsend GPSK))))
| PlanSete path1.Plan.(Pre.1 | PB.(Jnavigate path 1K))
| PlanSete path2.Plan.(Pre.1 | PB.(Jnavigate path 2K))
| PlanSete path3.Plan.(Pre.1 | PB.(Jnavigate path 3K)))

where B(8) = ¬sensor malfunc, B(9) = ¬engine malfunc, B(10) = at destination, B(11) = fc,

B(12) = sensor malfunc, and B(13) = engine malfunc.

Figure 24: Retrieval contingency: BDI agent design and bigraph encoding.

41

7.5. Properties

To verify the designs, we generate a transition system from the BRS repre-
senting the agents (and their semantics). The transition system has bigraphs as
states and reactions as transitions. We can reason about static properties us-
ing bigraph patterns [22] and dynamic properties using linear or branching time
temporal logics such as Computation Tree logic (CTL) [33], which we use in our
examples. As we simply generate a transition system, the property specification
language is ultimately constrained by the logics the selected model checker sup-
ports. For example, in our case we can use the non-probabilistic and non-reward
logics provided in PRISM.

7.5.1. Bigraph patterns

Bigraph patterns are predicates on states: if the pattern matches the current
state then the predicate is true.

We have found the bigraph patterns most useful for reasoning about BDI
agents are often a fragment of the right-hand side of reactions, i.e. they check
that a desired or anticipated operation has taken place. For example, con-
sider the state predicate: there is a declarative goal corresponding to event
e patrol task (i.e. goal(false, e patrol task, false)). The bigraph pat-
tern is

Goal.(SC.(False | id) | FC.(False | id) | Try.id)

where SC is the success condition, FC the failure condition, and Try the plan
choice B. The presence of Try indicates that event e patrol task is within the
given declarative goal and has been reduced to its set of relevant plans, from
which an applicable plan is selected, according to the right-hand side of the
reaction given in Fig. 12b. As long as Try is present (regardless of what is under
it, i.e. Try.id), the declarative goal is being pursued.

7.5.2. Example properties

Example 1 (Persistent patrol). A key property is that the goal corresponding
to event e patrol task is persistent: A[G Fϕ1], where

ϕ1
def
= Goal.(SC.(False | id) | FC.(False | id) | Try.id)

As expected the property holds.

Example 2 (Concurrent sensing in one intention). A useful property to investi-
gate is whether it is possible to complete both sensing tasks regardless of their
interleaving. Recall that in Can semantics, whenever an intention is completed
or fails, the agent will simply remove it from the intention base (Aupdate Fig. 15).
Therefore, to make sure that an intention is successfully achieved, we have to
ensure that a given intention is indeed removed only after being completed
successfully. We denote the bigraph pattern for the successful completion of

a given intention as ϕ2
def
= Intent.1, the failure of completion of an intention

ϕ3
def
= Intent.ReduceF, and the removal of an intention from intention base

42

ϕ4
def
= Intentions.1. Bigraph pattern ϕ4 specifies the removal of an intention

from the intention base if and only if it is the only intention in the base. If
there is more than one intention, it is impossible to reason about which inten-
tion is removed because there are no intention identifiers in CAN. We reflect
on this lack in Section 8.6. Given the bigraph patterns above, the property is
A[F(ϕ2 ∧Xϕ4)]. This property is false, and we find that E[F(ϕ3 ∧Xϕ4)] holds
(i.e. there exists a path for which eventually the intention is removed after being
failed). This is because concurrency can introduce undesirable race conditions8.
For example, the action send back in line 7 needs to be executed before the ac-
tion save shots is executed, to free required storage. This example highlights
the benefits of a formal model for analysis at design time.

Example 3 (Contingency handling). Similar to Example 2, a desirable property
is that regardless of any malfunction, the intention for event e retr is removed
after successful completion. The property is A[F(ϕ2 ∧Xϕ4)] and it holds.

Before we give the results of verification, recall that our bigraph encoding
introduces intermediate states that do not correspond to an agent step. There-
fore, the operator X (next) has to be used carefully; some properties may require
modification, because e.g. the next operator refers to the next internal state, not
the next agent state. For example, there may be belief checks between agent
steps. In examples 2 and 3 above, no modifications were required.

7.6. Results

For automatic verification we exported the transition system to the PRISM
model-checker9 by assuming all transitions occur with equal probability. The
size of transition system10 generated by BigraphER and verification times are
as follows:

Example States Transitions Build time (s) Ver. time (s)

Persistent patrol 239 287 7.30 0.081
Concurrent sensing (1 Intent) 731 879 20.47 0.01
Concurrent sensing (2 Intents) 856 1074 15.11 N/A
Contingency handling 644 922 79.98 0.002

While contingency handling has fewer states/transitions than the concurrent
sensing example, it takes more time to generate the transition system. We
attribute this to the former containing more bigraph entities. Similarly, while
concurrent sensing in two intentions has more states/transition than its one
intention counterpart, it takes less time to generate the transition system due
to having fewer bigraph entities.

8This race condition is within the agent design itself, and should not be confused with
the race between reaction rules that update the belief sets (a bigraph model implementation
detail).

9Currently the only model-checker format supported by BigraphER.
10Build times were obtained on a laptop with a 16-core Intel Core i7-11800H at 2.30GHz

(hyperthreaded), 16 GB memory, and running 64-bit Ubuntu Linux 20.04.3 LTS.

43

8. Reflections

We reflect on the insights gained into the Can language through the pro-
cess of building the bigraph model and detail our first-hand experience of the
theoretical and practical value of Bigraphs for encoding agent languages. We
stress that our reflections on Can should not be taken as criticism of Can in
any sense. On the contrary, we hope to show that the explicitness of the bi-
graph encoding is useful, e.g. to show areas of semantics with too much (resp.
too little) information, and to aid in the continuous advancement of BDI family
languages, in particular, from the point of verification and validation.

8.1. Modularity in Semantics of Can

A distinguished characteristic of Can (similar to Modular Structural Opera-
tional Semantics (MSOS) [34]) is that the transition rules for each constructcan
be given incrementally, i.e. a modular operational semantics. In this case, the
modularity in Can (same as in 3APL) separates how to evolve an intention
(i.e. the intention-level semantics) from how to evolve the whole agent (i.e. the
agent-level semantics). This approach has its merits, for example, we can easily
extend or modify one side of the semantics (e.g. the agent-level) without altering
the other one. This was illustrated when adding the concurrency and declarative
goals extensions (Section 6). The extensions only change intention-level steps,
and as such, do not affect the overall faithfulness theorem as this is defined over
agent-level steps.

The two-levels of semantics could be useful for verification. For example,
we may consider only the agent-level transitions which would give snapshots
of the agent state, without any information on how choices were made. In the
bigraph model we do not make a distinction between agent-level and intention-
level transitions, and both appear in the resulting output. The bridging of
agent-level and intention-level transitions is performed by the introduction of
the Reduce entity. For example, the reaction rule intention step that encodes
the agent-level derivation rule Asteps introduces a Reduce entity to an intention,
requesting it to be reduced according to the intention-level semantics. The use
of instantaneous reaction rules, that do not show up in the resulting transition
system, would allow only agent-level steps to be analysed without changes to
the reaction rules themselves.

8.2. Inconsistency of Semantics in Can Literature

In the literature, there are subtle differences between definitions of the Can
semantics. In particular, between [6] and [23]. For example, consider the .⊥
rule from the two works above:

P1 6= nil 〈B, P1〉9
〈B, P1 B P2〉 → 〈B, P2〉

B⊥ in [6]

P1 6= nil 〈B, P1〉9 〈B, P2〉 → 〈B′, P ′2〉
〈B, P1 B P2〉 → 〈B′, P ′2〉

B⊥ in [23]

44

In [6], the rule B⊥ is only dependent upon the irreducibility of the program
P1. However, in [23], not only is it dependent upon the irreducibility of P1, but,
within the same operation, the reducibility of P2.

This change is significant as, in the first case, we wait to do failure recovery.
This can allow the current belief base to be updated before selecting a new plan
(in all cases P2 has the form e : (|∆|)). In the second case there is no scope to
wait for belief base changes.

It is not immediately clear which approach is better in practice. One benefit
of a formal model is that we can begin to unpick these questions by substituting
the current try failure reaction for a modified version.

8.3. Redundant Event Names

The Can language includes the form e : (|∆|) representing a set of relevant
plans which can be used to address the event e. This set is updated as plans are
selected and executed. For example, when an applicable plan is selected (i.e.
ϕ : P ∈ ∆ and B |= ϕ), it will be removed from the set of remaining plans (i.e.
e : (| ∆ \ {ϕ : P} |)). However, after a set of relevant plans is selected from the
plan library, the event name e becomes redundant in the sense that it is never
used by any Can semantic rules. This is seen clearly in the bigraph model,
where only reduce event (in Fig. 11) utilises the event name link. Other rules
always match the event name as open (connected to 0 or more other entities).
This suggests that the form of plans within the plan library, and those within
intentions should be different, e.g. e : (|∆|) and (|∆|).

8.4. No Difference between Intention Success and Failure

As a high-level planning language, Can remains agnostic to many impor-
tant issues in practice. One such issue is the inability to tell if an intention
completed successfully, or with a failure. The derivation rule Aupdate in Fig. 6
simply removes a completed intention from the intention base, namely an inten-
tion nil or one that is failed and cannot make any further transition. Therefore,
the completion of an intention is not equivalent to the achievement of an in-
tention. To verify the achievement of an intention (which in practice is the
most important property to check), we also have to ensure that its completion
is not due to the failure. This is precisely how we verify the achievement of an
intention in Section 7.5.2. Therefore, in our bigraph model, we have to encode
the derivation rule Aupdate into two cases, namely intention done F for failure
case and intention done succ for success case.

8.5. Oracle for Failure

Failure in Can semantics is denoted by 〈B, P1〉9 as the negative premise in
the related derivation rule (e.g. B⊥). Therefore, to be able to apply the rule B⊥,
the agent somehow can “look-ahead” to the result of the inner-reduction, i.e. there
is some oracle that determines if the inner-reduction is possible. However, in
practice (e.g. our bigraph encoding), no oracle exists, and the agent has to ex-
plicitly to try progress a step to see if it reduces. In others words, unlike the

45

derivation rules which, to some extent, have the impression the failure occurs
via one single rule 〈B, P1〉 9, it actually involves a strict partial execution of
other rules. It also explains why we convert the negative premise into the pos-
itive premise in the actual encoding with additional token ReduceF. It can be
clearly seen in Fig. 16 where, before an action is deemed as un-executable, its
pre-condition has to be actually checked to be false according to the belief base.

8.6. Absence of Meta-level Reasoning

While it is possible to reason about agents when only a single intention is
involved – for example through checking a property that checks if an intention
failed before it was removed (see Section 7.5.2) – these approaches do not apply
when there are more than one concurrent intentions. The main issue here is
that intentions lack identifiers. If we want to stay within the semantics in Can,
approaches to identifying specific intentions include (1) fixing the last program
within any intention to be unique to allow checking when this specific program
is removed, or (2) ensuring actions add unique beliefs however this requires
knowing ahead of time the actions that will be executed in success/failure cases.

Ideally, intentions would have unique identifier to aid verification. Adding
such an identifier is straightforward by replacing P ∈ Γ with 〈identifier , P 〉 ∈ Γ.
As such, to track an intention is removed, we simply have a bigraph pattern
Intent.(identifier | id) where identifier is the identifier of the intention and id the
site that abstracts away specific details of the intention. We argue that by index-
ing the intentions and further labelling its status (e.g. active or suspended)—
tackled by some promising work [35, 36]—that allows reasoning on intentions
provides strong starting point for next level of agent verification, e.g. in the
context of interacting with users.

Another area where keeping meta-information available is useful is to allow
tracking events to the intentions that are handling those events. In the current
semantics, when an event is processed (by Aevent) it is removed completely
from the desires structure and replaced by the set of relevant plans within an
intention. As we execute the plans we lose track of which event e generated that
intention (i.e. the means-end relations).

8.7. Concurrency Within vs. Among Intentions

One important decision and agent designer needs to make is whether to use
internal concurrency (through ‖) or intention concurrency via multiple events.
Without appropriate intention labelling (discussed in Section 8.6), it remains
difficult to write formal verification properties when using multiple-intentions.
In practice, concurrency among intentions requires significantly more state tran-
sitions than its counterpart seen in Section 7.6. This should not come as a
surprise as in concurrency among two intentions, the agent has two choices (as
to decide which intention to progress) on each step, while the agent only makes
a decision to progress the left or right part of concurrency within an intention.
That is, there is more interleaving to analyse with the multiple intentions.

46

8.8. Experience on Theoretical and Practical Bigraph Encoding Approach

Finally, we reflect on bigraphs as an (agent) language encoding framework
from both a theoretical and a practical perspective.

We found bigraphs to be useful and easy to use for encoding the syntax of
Can. It required a modest number of (core) entities (Table 3) and there was
a very direct translation of Can syntax to bigraphs (Fig. 3) thanks in part to
the inductively defined (compositional) nature of bigraphs. One benefit, often
not seen in other modelling formalisms, is the use of parallel regions to separate
models into different, but interacting, perspectives. We had four perspectives:
Belief, Desire, Intention and Plan and this helped to separate concerns and
make the encoding process easier to manage. We expect perspectives to play a
large role in extending the model, for example, adding an Environment perspec-
tive to model when external events can happen. The use of links in bigraphs has
been proven a useful feature, allowing and event to directly connect to the set
of plans that can respond to it. Using links decreases the likelihood of human
errors, e.g. misspelling of event names

For encoding semantics, allowing user-specified reaction rules facilitated a
direct mapping of transition rules of Can, which led to the establishment of a
faithful encoding where it was possible to sketch proofs based on finite rule sets.
One area where we found bigraphs particularly useful was analysing the treat-
ment of concurrency within and among multiple intentions (Section 8.7). Being
able to draw the rules diagrammatically proved highly useful for explaining the
model to others, and noticing potential errors at a glance (much more than text
based syntax, although this is anecdotal evidence only at this point).

For debugging, the graphical output of each state in the transition system
provided by BigraphER provided a highly visual debugging experience and en-
abled us to locate the bugs with ease. However, we found that using reaction rule
priorities can often make it difficult to know exactly what rules can fire when,
and this can lead to subtle bugs. Another disadvantage is that, as bigraphs
are general purpose, we often have to provide extra rules for operations that
are built-in for other formalisms, e.g. set operations. In terms of performance,
BigraphER performs well in general, but, due to matching semantics, the time
required to generate a transition system is dependent on both the number of
transitions and the number of bigraph entities in the agent plan library (poten-
tially large for complex agents). However, our latest work [37] which utilises a
subgraph isomorphism solver improved the matching performance by over two
orders of magnitude on a range of problem instances drawn from real-world
mixed-reality, protocol, and conference models.

For verification, unlike other approaches, e.g. both Maude-based and AIL-
based approaches that rely on their own dedicated model checkers, we instead
export a predicate-labelled transition system for use with existing model check-
ing tools such as PRISM. This allows a wide range of highly-performance tools,
including different logics etc., to be used, however it does limit, for example,
the amount of symbolic analysis these tools can perform, leading to degraded
performance.

47

Overall we would recommend bigraphs as a tool for working with program-
ming languages. We believe there is much to be gained including from the di-
agrammatic notation, explicit entity linking, multi-perspective modelling, and
efficient tooling.

9. Related Work

Reasoning about BDI agents through model checking has been well ex-
plored. A key work in this area [12] reports a translation of AgentSpeak
programs to both the Promela modelling language and Java, and shows how
to apply the Spin [14] model checker and Java PathFinder program model
checker to verify the agents. Similar to our bigraph encoding, the translation of
AgentSpeak programs in Promela in [12] provides an encoding the semantics of
AgentSpeak(F)—the finite state version of AgentSpeak—in Promela. However,
there is no formal faithfulness establishment of such a translation provided and
it is limited to the AgentSpeak language that does not contain features such as
declarative goals. The translation of AgentSpeak programs to Java facilitates
direct verification of the implementation of an agent rather than an abstract
model specification (as with Promela) by symbolically analysing the underly-
ing Java bytecodes. In both cases, the proprieties checked are specified in a
simplified BDI logic language mapped down in linear temporal logic (LTL) for-
mula [38].

Comparing the translation experience of these two translation in [12], Java
stood out as a more promising approach (as a general purpose language) com-
pared to Promela (often used for the verification of communication protocols).
Many have built upon this Java-based verification approach. In particular, re-
cent work implements a BDI agent programming infrastructure as a set of Java
classes – the Agent Infrastructure Layer (AIL) [15]. As a matter of fact, the
Gwendolen BDI language [39] provides the default semantics for the AIL, and
is designed with verification in mind by including extra book-keeping and tran-
sition rules that purely assist verification.

The AIL has been further developed [40] to support the verification of hetero-
geneous multi-agent systems by allowing different agent programming languages
to be used within the same AIL framework. Although the AIL supports het-
erogeneous agents, to date the BDI programming languages implemented in the
AIL [41] is tightly bounded to Gwendolen and its extensions (e.g. [42]) along
with another language named GOAL [43]. Crucially, what these approaches
verify is the implementation of a given language. The faithfulness of the imple-
mentation to the language semantics is often omitted for convenience. Utilising
Java PathFinder (and its enhanced version [40]) has the advantage of bypass-
ing the need of a mathematical model by deriving the model directly from the
program codes. However it typically suffers from a significant performance bot-
tleneck due to the symbolic execution of Java bytecode. Agent properties for
AIL are usually specified in LTL fashion, There is, however, an exception in
[44] where the model generated by Java PathFinder is converted to the input

48

language of PRISM [45] to, e.g. provide access to probabilistic property speci-
fication. Unfortunately the conversion to PRISM does not maintain direct link
between the implemented program and the model being verified, e.g. it might
be difficult to reflect back into the application when creating counter examples.
Meanwhile, by simplifying the structure and execution of AgentSpeak (deviating
from mainstream BDI agents), it can also facilitate the verification of probabilis-
tic and time bound properties through PRISM [46]. Finally, there is promising
progress to verify the hybrid autonomous system in which the high-level is dis-
crete logic-based framework (modelled by BDI agents) and the low-level is a
continuous control system [47].

The two main BDI languages implemented in AIL are Gwendolen and GOAL.
Unlike main-stream BDI programming languages, e.g. AgentSpeak, GOAL is a
pure reactive system and does not select pre-defined plans from a library but
instead selects individual actions (or a sequence of actions). Like Can, Gwen-
dolen handles declarative goals, failure recovery and concurrency with some
differences. In Gwendolen, declarative goals make statements about the beliefs
the agent wishes to hold and remains a goal until the agent gains the appropri-
ate beliefs. As such, the declarative information in Gwendolen is only carried
for the initial goal of the intention, no declarative information is carried for any
of its active sub-events. For example, if beliefs sought hold, the sub-event will
still be executed to the end. Meanwhile, in CAN, the declarative information is
carried for any stage of evolution of programs in the declarative goal. Once the
success condition holds, the related program is halted immediately. Gwendolen
does not allow goal failure conditions so is unable to decouple goal failure from
plan failure. For failure recovery, Gwendolen is explicitly programmed with the
appropriate plan revision rules (as meta-level rules) which specify a prefix of
the current plan to be dropped and replaced by another. Finally, concurrency
in Gwendolen is only allowed in the intention level (i.e. no concurrent execution
within an intention), and, by default, is conducted in first-in-first-out fashion to
manage interleaving.

Work exists where the operational semantics of (general) agent programming
languages is explicitly encoded directly in verification languages. For example,
[48] presents a programming language for multi-agent systems, MABLE, that
is translated to Promela and verified using Spin. Another work [49] develops a
verification framework for multi-agent systems specified by the cognitive agents
specification language (CASL). This framework is based on the prototype ver-
ification system (PVS) and facilitates theorem to verify properties of CASL
specifications. Both these agent languages are not specifically geared towards
BDI-style rational agents but provide more general tools for the analysis of
agents. None of these works provides a formal establishment of the faithful
translation between the given agent language and verification language.

Besides Promela, term-rewriting, specifically in Maude [21], has been used to
encode BDI agent languages, allowing verification of temporal properties with
the Maude LTL model checker [50]. For example, Maude has been used to
directly encode GOAL semantics in a single agent setting [51]. In a multi-agent
setting, [52] shows how both Jason and 3APL programs can be translated into

49

the language meta-APL and then encodes meta-APL semantics in Maude for
subsequent verification. Besides the approaches based on existing verification
tools/model checkers (including Spin, Java PathFinder, and Maude), there is a
different verification approach [53] that performs the verification by modelling
the interpreter (i.e. the implementation) of the GOAL language. The agent
interpreter is used to generate the state space and a model checker is built
on top of this interpreter with two components: 1) a translation the linear
temporal properties to a property space, and 2) a means to evaluate the property
using a search over both the property and state spaces. The authors provide
an empirical comparison for the GOAL language of its interpreter-based, AIL-
based, and Maude-based verification approach. Interestingly, it found that the
Maude-based verification approach was unable to deal even with the simple toy
examples due to high verification times.

Recent work continues to advance the state-of-the-art of agent verification
problems. For example, there has been considerable work on developing various
state-space reduction techniques to improve the efficiency of verification and
support richer property specifications for large agent systems. The work [54]
applies program slicing techniques—that have been successfully used in con-
ventional programming languages—to reduce the state-space required in agent
program verification problem. The slicing technique eliminates details of the
program that are not relevant to the property being analysed, i.e. property-
based slicing. This work was extended [55] to provide detailed correctness and
complexity results for a property-based slicing algorithm for AgentSpeak. The
work [56] takes this even further by proposing a new, and improved, slicing
method. Noticeably, there is another work [57] that combines two state-space
reduction techniques: property-based slicing and partial order reduction for
verifying the GOAL language.

Bigraphs have been shown [24] to be suitable for encoding process algebras
such as CCS [58], Mobile Process [59], and π-calculus [18] as well as the Actor
programming model [60]. Recently, there is also a growing trend to specify
and verify agent-based systems via bigraphs, in particular, multi-agent systems.
However, most of them still remain at the stage of proof of concept. For example,
the work [61] proposes a methodology for modelling and simulating multi-agent
systems via bigraphs. The core idea is that the containment relation of bigraphs
mirrors the administrative relations of agents while reaction rules model agent
reconfigurations, e.g. bigraph destruction translates into agent termination. One
work that is perhaps closest to ours is [62], which also models BDI agents via
bigraphs. However, it considers multi-agent systems, and treats the internal
reasoning of each BDI agent as a black box. As a result, they provide no details
regarding how the agents behave in an environment.

10. Future Work

The encoding of BDI agents in bigraphs is our first step laying out a foun-
dation for more advanced reasoning. As future work, we have in mind two main

50

extensions: probabilistic reasoning, in particular, plan selection and intention
trade-off, and dynamic environments.

In general, there may be several applicable plans which achieve a given
event. The agent has to select one and it may be desirable to specify what is
“most appropriate” at that time, which may depend upon different, and possibly
domain-specific characteristics, e.g. cost and preference. Additionally, the agent
may be pursuing a set of concurrent intentions, i.e. there is concurrency between
the top-level external events. Similar to the plans, intention, it may be desirable
to again specify “most appropriate” e.g. more urgent.

We will develop a more nuanced approach to handling plan selection and
intention scheduling by assigning weights (to plans and events). These will be
encoded by reaction rules with weights using probabilistic bigraphs [63] that
export Discrete-time Markov chains (DTMCs). As we export explicit transition
systems, this approach can support many probabilistic logics such as PCTL [64]
found in PRISM. We have begun preliminary work in this direction [65].

Our current encoding of BDI agents is limited to a self-static environment,
i.e. the environment changes only when the agent changes it. We plan to develop
a self-dynamic environment and will extend the mechanism of failure recovery
to allow re-selection of previously failed plans. This will not only increase the
persistence of an agent, but also increase the likelihood of success by taking
advantage of environmental changes.

Finally, we also plan to address the problems of multi-agent systems. While
it can be tempting to model the multi-agent system in an interleaved fashion
(i.e. treating each agent as a thread within a system), a true multi-agent system
should support true concurrency (e.g. one agent executes an action while another
agent is performing another action). Recently, there is a promising work on true
concurrency in BDI agent systems [66], which may be helpful to achieve this
goal. Recent work [67] has also addressed scenarios where autonomous agents
collaborate with humans to achieve a shared goal.

11. Conclusion

Rational agents, such as Belief-Desire-Intention (BDI) agents, will play a
key role in future autonomous systems and it is essential we can reason about
their behaviours, and provide early, i.e. design-time, indications of potential
problems, e.g. deadlocks causes by shared resources.

We have presented a framework, based on Milner’s bigraphs, for modelling
and verifying BDI agents specified in the Can language. We believe this is
the first executable semantics of Can, allowing verification of abstract agent
programs, rather than verification based on a specific implementation of Can.
The use of four perspectives in the bigraph model: Belief, Desire, Intention and
Plan, helps is to separate concerns in the encoding and offers a clear visualisation
of the resulting model.

The two key functions are the syntax encoding J·K and JJ·KK that enables the
behavioural encoding. The former has the added feature of introducing event

51

indices for plans, which decreases errors and aids search. The latter is a bridge
between agent-level and intention-level steps. Bigraph parallelism indicates how
the belief base is the environment for reduction and conditional bigraphs allow
us to prioritise reaction rules, which simplifies the encoding.

We have shown that the encoding of Can agents in bigraphs is faithful by
proving any Can step is captured by a finite sequence of bigraph reaction rules,
and we have shown shown the approach is practical through three example
UAV applications. In each case, generating and verifying the model took no
more than a few minutes.

This work has also highlighted many interesting features of the current se-
mantics of Can, such as the inability to distinguish between the success and
failure of an intention and lack of meta-level reasoning, and it lays the founda-
tion for future modelling work. We envisage an extended model (and hence ex-
tended semantics) that features probabilistic choice and dynamic environments
– allowing quantitative model checking of agent programs.

Acknowledgements

This work is supported by the Engineering and Physical Sciences Research
Council, under PETRAS SRF grant MAGIC (EP/S035362/1) and S4: Science
of Sensor Systems Software (EP/N007565/1).

References

[1] M. Bratman, Intention, Plans, and Practical reason. Harvard University
Press, 1987.

[2] A. S. Rao, “AgentSpeak (L): BDI agents speak out in a logical computable
language,” in Proceedings of European Workshop on Modelling Autonomous
Agents in a Multi-Agent World. Springer, 1996, pp. 42–55.

[3] K. V. Hindriks, F. S. D. Boer, W. V. d. Hoek, and J.-J. C. Meyer, “Agent
programming in 3APL,” Autonomous Agents and Multi-Agent Systems,
vol. 2, no. 4, pp. 357–401, 1999.

[4] M. Dastani, “2APL: a practical agent programming language,” Au-
tonomous agents and multi-agent systems, vol. 16, no. 3, pp. 214–248, 2008.

[5] R. Bordini, J. Hübner, and M. Wooldridge, Programming multi-agent sys-
tems in AgentSpeak using Jason. John Wiley & Sons, 2007, vol. 8.

[6] S. Sardina, L. d. Silva, and L. Padgham, “Hierarchical planning in BDI
agent programming languages: A formal approach,” in Proceedings of the
International Joint Conference on Autonomous Agents and Multiagent Sys-
tems, 2006, pp. 1001–1008.

52

[7] S. S. Benfield, J. Hendrickson, and D. Galanti, “Making a strong business
case for multiagent technology,” in Proceedings of the Fifth International
Joint Conference on Autonomous Agents and Multiagent systems. ACM,
2006, pp. 10–15.

[8] L. Braubach, A. Pokahr, and W. Lamersdorf, “Negotiation-based patient
scheduling in hospitals,” in Advanced Intelligent Computational Technolo-
gies and Decision Support Systems, 2014, pp. 107–121.

[9] S. McArthur, E. Davidson, V. Catterson, A. Dimeas, N. Hatziargyriou,
F. Ponci, and T. Funabashi, “Multi-agent systems for power engineering
applications – part i: Concepts, approaches, and technical challenges,”
vol. 22, no. 4. IEEE, 2007, pp. 1743–1752.

[10] G. Brat, E. Denney, D. Giannakopoulou, J. Frank, and A. Jonsson, “Ver-
ification of autonomous systems for space applications,” in Proceedings of
IEEE Aerospace Conference, 2006.

[11] L. Lestingi, M. Askarpour, M. M. Bersani, and M. Rossi, “Formal verifi-
cation of human-robot interaction in healthcare scenarios,” in Proceedings
of International Conference on Software Engineering and Formal Methods.
Springer, 2020, pp. 303–324.

[12] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge, “Verifying multi-
agent programs by model checking,” Autonomous Agents and Multiagent
Systems, vol. 12, no. 2, pp. 239–256, 2006.

[13] G. J. Holzmann and W. S. Lieberman, Design and validation of computer
protocols. Prentice hall Englewood Cliffs, 1991, vol. 512.

[14] G. J. Holzmann, “The model checker SPIN,” IEEE Transactions on soft-
ware engineering, vol. 23, no. 5, pp. 279–295, 1997.

[15] L. A. Dennis, B. Farwer, R. H. Bordini, and M. Fisher, “A flexible frame-
work for verifying agent programs,” in Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent Systems, 2008,
pp. 1303–1306.

[16] G. Brat, K. Havelund, S. Park, and W. Visser, “Model checking programs,”
in Proceedings of IEEE International Conference on Automated Software
Engineering. IEEE, 2000, pp. 3–11.

[17] R. Milner, “Bigraphs and their algebra,” Electronic Notes in Theoretical
Computer Science, vol. 209, pp. 5–19, 2008.

[18] M. Bundgaard and V. Sassone, “Typed polyadic pi-calculus in bigraphs,”
in Proceedings of ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming, 2006, pp. 1–12.

53

[19] M. Sevegnani and M. Calder, “BigraphER: rewriting and analysis engine for
bigraphs,” in Proceedings of International Conference on Computer Aided
Verification. Springer, 2016, pp. 494–501.

[20] B. Archibald, C. Muffy, and M. Sevegnani, “Conditional bigraphs,” in In-
ternational Conference on Graph Transformation. Springer, 2020, pp.
3–19.

[21] M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Mart́ı-Oliet,
J. Meseguer, R. Rubio, and C. Talcott, “Maude manual (version 3.0),”
SRI International, 2020.

[22] S. Benford, M. Calder, T. Rodden, and M. Sevegnani, “On lions, impala,
and bigraphs: Modelling interactions in physical/virtual spaces,” ACM
Transactions on Computer-Human Interaction (TOCHI), vol. 23, no. 2,
pp. 1–56, 2016.

[23] S. Sardina and L. Padgham, “A BDI agent programming language with
failure handling, declarative goals, and planning,” Autonomous Agents and
Multi-Agent Systems, pp. 18–70, 2011.

[24] R. Milner, The space and motion of communicating agents. Cambridge
University Press, 2009.

[25] J. Meseguer, “Twenty years of rewriting logic,” J. Log. Algebraic Methods
Program., vol. 81, no. 7-8, pp. 721–781, 2012. [Online]. Available:
https://doi.org/10.1016/j.jlap.2012.06.003

[26] M. Calder and M. Sevegnani, “Modelling IEEE 802.11 CSMA/CA
RTS/CTS with stochastic bigraphs with sharing,” Formal Aspects of Com-
puting, vol. 26, no. 3, pp. 537–561, 2014.

[27] G. D. Plotkin, “A structural approach to operational semantics,” in Lecture
Notes, Aarhus University Denmark, 1981.

[28] B. Logan, J. Thangarajah, and N. Yorke-Smith, “Progressing intention
progression: A call for a goal-plan tree contest,” in Proceedings of Interna-
tional Conference on Autonomous Agents and Multiagent Systems, 2017,
pp. 768–772.

[29] M. Xu, K. McAreavey, K. Bauters, and W. Liu, “Intention interleaving via
classical replanning,” in Proceedings of International Conference on Tools
with Artificial Intelligence, 2019, pp. 85–92.

[30] B. Archibald, M. Calder, M. Sevegnani, and M. Xu, “Modelling and
verifying BDI agents with bigraphs – models,” Jan. 2020. [Online].
Available: https://doi.org/10.5281/zenodo.4472541

[31] J. F. Groote, “Transition system specifications with negative premises,”
Theoretical Computer Science, vol. 118, no. 2, pp. 263–299, 1993.

54

[32] R. J. van Glabbeek, “The meaning of negative premises in transition system
specifications ii,” The Journal of Logic and Algebraic Programming, vol. 60,
pp. 229–258, 2004.

[33] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchronization
skeletons using branching time temporal logic,” in Proceedings of Workshop
on Logic of Programs. Springer, 1981, pp. 52–71.

[34] P. D. Mosses, “Modular structural operational semantics,” J. Log.
Algebraic Methods Program., vol. 60-61, pp. 195–228, 2004. [Online].
Available: https://doi.org/10.1016/j.jlap.2004.03.008

[35] J. Harland, D. N. Morley, J. Thangarajah, and N. Yorke-Smith, “An oper-
ational semantics for the goal life-cycle in BDI agents,” Autonomous agents
and multi-agent systems, vol. 28, no. 4, pp. 682–719, 2014.

[36] ——, “Aborting, suspending, and resuming goals and plans in BDI agents,”
Autonomous Agents and Multi-Agent Systems, vol. 31, no. 2, pp. 288–331,
2017.

[37] B. Archibald, K. Burns, C. McCreesh, and M. Sevegnani, “Practical bi-
graphs via subgraph isomorphism,” in 27th International Conference on
Principles and Practice of Constraint Programming, 2021.

[38] E. A. Emerson, “Temporal and modal logic,” in Formal Models and Se-
mantics. Elsevier, 1990, pp. 995–1072.

[39] L. A. Dennis, “Gwendolen semantics: 2017,” Technical Report ULCS-17-
001, University of Liverpool, 2017.

[40] L. A. Dennis, M. Fisher, M. P. Webster, and R. H. Bordini, “Model checking
agent programming languages,” Automated software engineering, vol. 19,
no. 1, pp. 5–63, 2012.

[41] L. A. Dennis, “The MCAPL framework including the agent infrastructure
layer and agent Java PathFinder,” The Journal of Open Source Software,
2018.

[42] L. Dennis, M. Fisher, M. Slavkovik, and M. Webster, “Formal verifica-
tion of ethical choices in autonomous systems,” Robotics and Autonomous
Systems, vol. 77, pp. 1–14, 2016.

[43] K. V. Hindriks, F. S. De Boer, W. Van Der Hoek, and J.-J. C. Meyer,
“Agent programming with declarative goals,” in Proceedings of Inter-
national Workshop on Agent Theories, Architectures, and Languages.
Springer, 2000, pp. 228–243.

[44] L. A. Dennis, M. Fisher, and M. Webster, “Two-stage agent program ver-
ification,” Journal of Logic and Computation, vol. 28, no. 3, pp. 499–523,
2018.

55

[45] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of
probabilistic real-time systems,” in Proceedings of International conference
on computer aided verification. Springer, 2011, pp. 585–591.

[46] P. Izzo, H. Qu, and S. M. Veres, “A stochastically verifiable autonomous
control architecture with reasoning,” in Proceedings of IEEE Conference
on Decision and Control. IEEE, 2016, pp. 4985–4991.

[47] L. A. Dennis, M. Fisher, N. K. Lincoln, A. Lisitsa, and S. M. Veres, “Prac-
tical verification of decision-making in agent-based autonomous systems,”
Automated Software Engineering, vol. 23, no. 3, pp. 305–359, 2016.

[48] M. Wooldridge, M.-P. Huget, M. Fisher, and S. Parsons, “Model check-
ing for multiagent systems: The MABLE language and its applications,”
International Journal on Artificial Intelligence Tools, vol. 15, no. 02, pp.
195–225, 2006.

[49] S. Shapiro, Y. Lespérance, and H. J. Levesque, “The cognitive agents spec-
ification language and verification environment for multiagent systems,”
in Proceedings of the first international joint conference on Autonomous
agents and multiagent systems: part 1, 2002, pp. 19–26.

[50] S. Eker, J. Meseguer, and A. Sridharanarayanan, “The Maude LTL model
checker,” Electronic Notes in Theoretical Computer Science, vol. 71, pp.
162–187, 2004.

[51] M. B. Van Riemsdijk, F. S. De Boer, M. Dastani, and J.-J. C. Meyer, “Pro-
totyping 3APL in the Maude term rewriting language,” in International
Workshop on Computational Logic in Multi-Agent Systems. Springer,
2006, pp. 95–114.

[52] T. T. Doan, Y. Yao, N. Alechina, and B. Logan, “Verifying heterogeneous
multi-agent programs,” in Proceedings of the 2014 international conference
on Autonomous agents and multi-agent systems, 2014, pp. 149–156.

[53] S.-S. T. Jongmans, K. V. Hindriks, and M. B. Van Riemsdijk, “Model
checking agent programs by using the program interpreter,” in In-
ternational Workshop on Computational Logic in Multi-Agent Systems.
Springer, 2010, pp. 219–237.

[54] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge, “State-space re-
duction techniques in agent verification,” in Proceedings of the Third Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems-
Volume 2, 2004, pp. 896–903.

[55] R. H. Bordini, M. Fisher, M. Wooldridge, and W. Visser, “Property-based
slicing for agent verification,” Journal of Logic and Computation, vol. 19,
no. 6, pp. 1385–1425, 2009.

56

[56] M. Winikoff, L. Dennis, and M. Fisher, “Slicing agent programs for more ef-
ficient verification,” in International Workshop on Engineering Multi-Agent
Systems. Springer, 2018, pp. 139–157.

[57] S.-S. T. Jongmans, K. V. Hindriks, and M. B. Van Riemsdijk, “State space
reduction for model checking agent programs,” in International Workshop
on Programming Multi-Agent Systems. Springer, 2011, pp. 133–151.

[58] R. Milner, “Pure bigraphs: structure and dynamics,” Information and com-
putation, vol. 204, no. 1, pp. 60–122, 2006.

[59] O. H. Jensen, “Mobile processes in bigraphs,” Ph.D. dissertation, Univer-
sity of Aalborg, 2006.

[60] M. Sevegnani and E. Pereira, “Towards a bigraphical encoding of actors,”
in Proceedings of International Workshop on Meta Models for Process Lan-
guages, 2014.

[61] A. Mansutti, M. Miculan, and M. Peressotti, “Multi-agent systems design
and prototyping with bigraphical reactive systems,” in IFIP international
conference on distributed applications and interoperable systems. Springer,
2014, pp. 201–208.

[62] A. T. E. Dib and Z. Sahnoun, “Model checking of multi-agent system ar-
chitectures using BigMC,” in Proceedings of Federated Conference on Com-
puter Science and Information Systems, 2015, pp. 1717–1722.

[63] B. Archibald, M. Calder, and M. Sevegnani, “Probabilistic bigraphs,” Sub-
mitted for publication, 2021, preprint at https://arxiv.org/abs/2105.02559.

[64] A. Bianco and L. De Alfaro, “Model checking of probabilistic and nondeter-
ministic systems,” in International Conference on Foundations of Software
Technology and Theoretical Computer Science. Springer, 1995, pp. 499–
513.

[65] B. Archibald, M. Calder, M. Sevegnani, and M. Xu, “Probabilistic BDI
agents: Actions, plans and intentions.” in Proceedings of 19th Intl. Confer-
ence on Software Engineering and Formal Methods, 2021.

[66] L. De Silva, “An operational semantics for true concurrency in BDI agent
systems,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 05, 2020, pp. 7119–7126.

[67] B. Archibald, M. Calder, M. Sevegnani, and M. Xu, “Observable and
attention-directing BDI agents for human-autonomy teaming,” in Proceed-
ings Third Workshop on Formal Methods for Autonomous Systems, ser.
Electronic Proceedings in Theoretical Computer Science, M. Farrell and
M. Luckcuck, Eds., vol. 348. Open Publishing Association, 2021, pp.
167–175.

57

