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Abstract
Bigraphs simultaneously model the spatial and non-spatial relationships between entities, and have
been used for systems modelling in areas including biology, networking, and sensors. Temporal
evolution can be modelled through a rewriting system, driven by a matching algorithm that identifies
instances of bigraphs to be rewritten. The previous state-of-the-art matching algorithm for bigraphs
with sharing is based on Boolean satisfiability (SAT), and suffers from a large encoding that
limits scalability and makes it hard to support extensions. This work instead adapts a subgraph
isomorphism solver that is based upon constraint programming to solve the bigraph matching
problem. This approach continues to support bigraphs with sharing, is more open to other extensions
and side constraints, and improves performance by over two orders of magnitude on a range of
problem instances drawn from real-world mixed-reality, protocol, and conference models.
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1 Introduction

Bigraphs are a universal modelling formalism, used to represent both the spatial relationships
of entities and their global interactions. Since their introduction by Milner [24], they have
been used to model, amongst others: IoT/sensor systems [27, 6], Mixed-Reality systems [9],
networking protocols [10, 11], security [1], and biological systems [18]. A bigraph consists of
two graph-based structures over the same set of vertices: a place graph describing the nesting
of entities, e.g. a device within a room, and a link graph describing non-local relationships
through hyperedges, e.g. a device connected to (numerous) other devices regardless of location.
A Bigraphical Reactive System (BRS) allows bigraphs to evolve over time through a set of
reaction rules, of the form L −→ R, that find, through a matching algorithm, an instance of
bigraph L in a bigraph B and replace it with bigraph R. With a BRS, model verification is
performed either through reachability analysis over the transition system generated by the
reaction rules, or by simulation.

Efficient matching and rewriting routines are essential for practical analysis of large
models, and even small improvements per match can have significant impacts on the overall
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Figure 1 (a) Bigraph example with Rooms, People, Computers (blue squares), Routers (clear
rectangles), and Sockets (diamonds); (b) Place graph for (a); (c) Link graph for (a), unlinked entities
not drawn; (d) Reaction rule to move people between rooms.

analysis time, given the huge number of matches. In this work we show that a bigraph
matching algorithm implemented on top of a constraint programming solver for the subgraph
isomorphism problem provides a performant and extensible basis for bigraph matching. We
provide an encoding of bigraphs to graphs, in such a way that we can solve the bigraph
matching problem using a variant of the subgraph isomorphism problem (SIP) with additional
constraints. This process supports both standard bigraphs, and the bigraphs with sharing
extension. Using a set of real-world models, we show empirically that in all cases the
SIP solver outperforms the previous state-of-the-art SAT solver found in the open-source
BigraphER [26] toolkit, with a speedup of more than two orders of magnitude.

2 Background

We begin by giving the necessary background to present our contributions. In this section we
describe the concepts and theory underlying bigraphs, and then explain bigraph matching
and subgraph matching problems. The following section will explain how these matching
problems can be related.

2.1 Bigraphs
Bigraphs simultaneously model systems based on both spatial and non-local relationships
between entities. Throughout this paper we use bigraphs to refer to bigraphs with sharing,
which allow entities to have multiple parents.

Bigraphs have equivalent algebraic and diagrammatic notation. Throughout this paper
we use the diagrammatic notation when possible. An example bigraph is shown in Figure 1a.
This simple model represents people and computers within rooms and their links to specific
sockets (shown as diamonds) on a router. We use shapes and colour to denote different
entity types. Nesting and adjacency of entities represents spatial relationships, e.g. the
person is in the first room. The green hyperlinks represent non-spatial relationships, e.g.
links between routers in different rooms. Importantly, entities have fixed arity (number of
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links), e.g. sockets have arity 1, although links might not be linked elsewhere as shown by
the second to last socket.

Spatial relationships are captured by the place graph, shown in Figure 1b, that forms a
directed-acyclic-graph (DAG)1 over entities. Top-level places, shown as dashed rectangles,
are called regions that represent unknown (or empty) parent(s). The grey dashed rectangle
is called a site; similar to regions, sites represent an unknown (or empty) child bigraph.

Non-spatial relationships are captured by the link graph, shown in Figure 1c, that forms
a hypergraph over entities. Here, regions/sites are replaced by outer/inner names, i.e. they
represent (potentially) other entities on the same link. We draw outer names above the
diagrams and inner names below. A link is open if it connects to a name, and closed otherwise
(i.e. it connects only the specified entities).

Regions/sites and outer/inner names—called interfaces—allow us to build bigraphs
compositionally. That is, we can build larger bigraphs from smaller bigraphs. This is done
by placing regions into sites and connecting on like-names. For example, the bigraph in
Figure 1a accepts a bigraph with a single region and outer name y—adding it to the second
room and linking up the incoming link to the rightmost socket—and can be composed with a
bigraph with two sites (one for each region) that accepts a name x. Composition of bigraphs
is shown in more detail in Section 2.3 to describe the bigraph matching problem. We denote
the composition of bigraphs B0 and B1 as B0 ◦ B1 (placing the regions of B1 in the sites of
B0). Alternatively, we can build larger bigraphs through a tensor operation B0 ⊗ B1 that
places bigraphs side-by-side. In general, bigraphs form a specific type of symmetric monoidal
category [24], although we do not need the full power of this fact in this paper.

2.2 Bigraph Definitions
We give enough definitions for bigraphs with sharing to explain our encoding and matching
routines; full details are available elsewhere [25]. We use concrete bigraphs, where each entity
and closed link is named. Models are usually defined over abstract bigraphs that represent an
equivalence class of all bigraphs that have the same structure regardless of concrete names.
We always perform matching on concrete bigraphs so this is sufficient for our purposes.

We assume a set K of entity types (e.g. Room), an arity function ar : K → N, V a set of
entity identifiers v0, . . . , vn, E a set of link identifiers e0, . . . , en, and X a finite set of names
x, y, z, . . . , such that all names and identifiers are disjoint.

▶ Definition 1 (concrete place graph with sharing). A concrete place graph with sharing

B = (VB , ctrlB , prntB) : m → n

is a triple having m sites and n regions (treated as ordinals)2. B has a finite set VB ⊂ V of
entities, a control map ctrlB : VB → K, and a parent relation

prntB ⊆ (m ⊎ VB) × (VB ⊎ n)

that is acyclic i.e. (v, v) ̸∈ prnt+
B for any v ∈ VB, with prnt+

B the transitive closure of prnt.

▶ Definition 2 (concrete link graph). A concrete link graph

B = (VB , EB , ctrlB , linkB) : X → Y

1 A forest in standard bigraphs, and a DAG for sharing.
2 The function notation is used as place graphs (resp. link graphs, bigraphs) are arrows in a category

with ordinals, e.g. m, n (resp. sets of names, ordinal/name pairs) as objects.
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is a quadruple having (finite) inner name set X ⊂ X and an outer name set Y ⊂ X . B has
finite sets VB ⊂ V of entities and EB ⊂ E of links, a control map ctrlB : VB → K and a link
map

linkB : X ⊎ PB → EB ⊎ Y

where PB
def= {(v, i) | v ∈ VB , i = ar(ctrlB(v))} is the set of ports of B.

Closed links are those where the domain is restricted to PB and the image is in EB.
Otherwise they are open.

A concrete bigraph with sharing joins these two structures on VB .

▶ Definition 3 (concrete bigraph with sharing). A concrete bigraph

B = (VB , EB , ctrlB , prntB , linkB) : ⟨k, X⟩ → ⟨m, Y ⟩

consists of a concrete place graph with sharing BP = (VB , ctrlB , prntB) : k → m and a
concrete link graph BL = (VB , EB , ctrlB , linkB) : X → Y . The inner and outer interfaces of
B are ⟨k, X⟩ and ⟨m, Y ⟩, respectively.

2.3 Bigraph Matching Problem
We denote the identity bigraph over an interface I = ⟨m, X⟩ by idI : I → I. It maps names
in X to themselves and places m sites in m regions.

A Bigraphical Reactive System (BRS) allows bigraphs to evolve through a set of reaction
rules of the form L ▶R. Intuitively a reaction rule replaces an occurrence of a bigraph L

with R. An example reaction rule, allowing a person to move between rooms, is in Figure 1d.
The use of sites within the rooms allows them to contain any other entities. Reaction rules
can update both the place and link graph simultaneously as shown by the connection being
severed.

The central operation when computing over a BRS is the ability to match the left-hand-
side of a reaction rule. Matches are also used to define state predicates, i.e. as bigraph
patterns [9], and multiple matches per rewrite step are required for conditional rewriting [4].
If stochastic semantics are required [18] then the number of matches is required to correctly
normalise rates. Bigraph matching is defined formally in terms of occurrences:

▶ Definition 4 (concrete occurrence). Let P and T be two concrete bigraphs representing
a pattern and target. We say there is a concrete occurrence of P in T if there is a valid
decomposition T = C ◦ (idI ⊗ P ) ◦ D for some interface I, and concrete bigraphs C and D.
We call C the context and D the parameter. Two concrete occurrences are equal if they
differ only by a permutation or a bijective renaming on the inner interface of C and the outer
interface of D.

It is always possible to determine an abstract occurrence starting from a concrete one. In
other words, a bigraph P occurs in T (both abstract) only if an arbitrary concretisation of
P occurs in an arbitrary concretisation of T , where concretisation means the assignment of
distinct identifiers (drawn from V and E) to all entities and closed links.

An example match through decomposition is in Figure 2. We use the same entities as
before, but this time give a concrete pattern/target bigraph with identifiers vn, un, en. The
pattern is as given, while all additional entities are placed either in the context (i.e. the Room)
or the parameter (the additional socket/person). The additional wiring of z is through the
idI component of the decomposition. Because of the ability to loop outer names back to the
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Figure 2 Example matching instance with {u0 → v0, u1 → v2, u3 → v5, u2 → v4, ea → e1}. An
alternative match with u0 → v1 is possible.

parameter, for matching, we only need to consider open links and not distinguish between
inner and outer.

Treating matching as a decomposition is essential since, while it is necessary to find an
isomorphism between entities in the pattern and target graph, it is not sufficient. To have
a valid match we must also be able to form a valid context/parameter. For example, we
cannot have the same entity appear in both the context and the parameter.

Existing approaches.

The first bigraph matching algorithm [15] made use of structural induction on the algebraic
representation of bigraphs in order to find a valid match through an inference system. The
algorithm supports both standard bigraphs and binding bigraphs that allow names to have
locality. A similar inductive approach was used to provide the matching algorithm for
directed bigraphs [8] that allows directed link graphs.

Like the approach we outline, other algorithms encode the bigraph matching problem as
an instance of a combinatorial search problem, allowing re-use of existing tools for efficiency.
For example, jLibBig [12], which also supports directed bigraphs, formulates matching as a
constraint satisfaction problem, while BigraphER [26] is the only implementation to support
bigraphs with sharing through the use of SAT solvers.

The closest approach to ours encodes bigraphs as ranked graphs [14]. Ranked graphs can
be seen a graphs-with-interfaces, mirroring the sites/regions/names of bigraphs. Rather than
perform the encoding only for matching, ranked graphs are used to do the rewriting (as an
instance of double-pushout graph transformation) and then the entire structure is converted
back to a bigraph. Assuming negligible encoding/decoding time, the performance of this
approach depends on the underlying graph transformation framework.

2.4 Subgraph Isomorphism
The Subgraph Isomorphism Problem (SIP) is a classic NP-complete decision problem that
determines whether a pattern graph is a subgraph of (i.e. is present in) a target graph.
Because of its broad applicability, many dedicated solving algorithms exist, with the current



6 Practical Bigraphs via Subgraph Isomorphism

state of the art being the Glasgow Subgraph Solver [22]. This solver adopts a constraint
programming approach, combining inference and intelligent backtracking search, but with
special data structures and algorithms designed specifically for subgraph problems. The solver
supports variants of the problem, including non-induced and induced subgraph finding, graphs
involving directed edges, and labelling schemes defining vertex and edge compatibilities. It
can also explicitly enumerate all solutions, rather than just deciding whether one solution
exists.

Formally, the problem we will be solving is as follows. Given a pattern directed graph
G = (VG, EG), a target directed graph H = (VH , EH), and a vertex compatibility function3 ℓ :
VG × VH → {t, f}, a non-induced subgraph isomorphism with vertex compatibility constraints
from G to H is an injective mapping i : VG → VH such that edges are mapped to edges,
(u, v) ∈ EG =⇒ (i(u), i(v)) ∈ EH , and where vertex compatibility is respected, ℓ(v, i(v)) =
t ∀v ∈ VG. We wish to enumerate all such mappings.

3 Bigraph Matching as Subgraph Isomorphism

The key observation underlying our new approach is that bigraph matching instances can be
seen as a SIP problem with additional constraints to handle abstractions (regions/sites, and
names), and ensure valid decompositions (Section 2.3). Using a subgraph model rather than
a SAT model is potentially beneficial for three reasons. Firstly, subgraph solvers can carry
out stronger reasoning than SAT solvers, by using implied constraints based upon degrees
and neighbourhood degree sequences [29], cardinality [28], distances [7], and path counts
[20]. Secondly, we know how to design very good variable- and value-ordering heuristics for
graph problems [21, 5]. And thirdly, subgraph solvers can potentially deal with much larger
problem instances due to a compact representation of adjacency constraints.

However, most existing SIP solvers do not directly support hypergraphs, let alone
multiple overlaid graph structures like bigraphs. In order to use existing tools we encode the
pattern/target bigraphs into a traditional graph structure (with additional degree constraints).
This is a two step process. First we encode place graphs by removing/replacing abstractions
and then we flatten the link graphs into these encoded structures by replacing hyperedges
with cliques resulting in a single flattened graph. This flattened graph representation is
accepted by existing SIP tools, with small changes required to allow the vertex compatibility
function (encoding labelling and additional degree constraints). These are required as the
bigraph variant of SIP can be considered a special case somewhere between induced and
non-induced SIP, that is, the use of sites/regions/names swaps the matching semantics from
must have all edges matching to must have at least n edges matching. This encoding is
slightly under-constrained, however: although every bigraph matching corresponds to a
subgraph isomorphism, some subgraph isomorphisms do not give valid bigraph matchings,
and there can be multiple subgraph isomorphisms for a given bigraph matching. Rather
than attempting to handle these details through an awkward encoding, we will instead make
use of additional constraints (Section 3.4) and projection nogoods (Section 3.5) on solutions
to obtain the desired one-to-one correspondence between solver outputs and solutions.

Importantly there is not a single encoding function between bigraphs and flattened graphs.
Instead, to allow matching constraints to be specified, we require different encoding functions

3 Note that this kind of compatibility scheme is more general than the typical “oxygen atoms must be
mapped to oxygen atoms, and fluorine atoms must be mapped to fluorine atoms” labelling scheme
which occurs in many applications, but nearly all subgraph isomorphism solvers can easily be modified
to support this in practice through simple unary constraints.
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Figure 4 (a) Example target place graph encoding—regions/sites are replaced with unmatchable
vertices (shown as R and S but have no label in the encoding). Vertices show control labels; (b)
Example pattern place graph encoding—regions/sites removed and degree constraints introduced.

for the pattern and target graphs. A diagrammatic overview of the encodings is shown
in Figure 3. In the following sections we detail how the encodings are constructed. The
encodings are not total but are defined for all cases where matching is non-trivial—for
example, they are not designed to be used for node-free bigraphs, i.e. bigraphs containing
only hyperedges between names and/or roots/sites for example the identity bigraph.

3.1 Place Graph Encoding
The encodings take bigraphs and produce graphs (V, E) where V is a set of vertices and E a
set of edges. Additional constraints are specified with a compatibility function ℓp that we
define in Section 3.1.1.

The target place graph.

Let T P = (VT , ctrlT , prntT ) : m → n be a concrete place graph representing the target of
a matching instance. The target place graph encoding function ϕT : T P 7→ (V, E) is shown
diagrammatically in Figure 4a. Intuitively, we take the original place graph and extend it
with additional vertices for the sites and regions. Formally, the encoding produces a graph
with V = VT ⊎{ri | i ∈ n}⊎{si | i ∈ m} and E = prnt−1

T (the child relation). The site/region
vertices are added to ensure the structure is maintained, i.e. parent/child entities have correct
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in/out degrees, but regions/sites are never compatible and so do not appear in mappings.

The pattern place graph.

Let P P = (VP , ctrlP , prntP ) : i → j be a concrete place graph representing the pattern of a
matching instance. The pattern encoding function ϕP : P P 7→ (V, E) is shown diagrammatic-
ally in Figure 4b. Intuitively we take the original place graph and remove sites/regions as we
do not want to map abstract nodes into the target. The encoding produces a graph with
vertices V = VP , edges E = {(u, v) ∈ prnt−1

T | v /∈ i, u /∈ j}. As we still need to remember
the structure, we replace these with unary in/out degree constraints in the compatibility
function (Section 3.1.1). For sites/regions we introduce ≥ constraints to allow additional
incoming/outgoing edges, while all other entities must match in/out degrees exactly.

3.1.1 Place Compatibility Function
Additional bigraph specific constraints are handled by a place compatibility function ℓp :
VG × VH → {t, f} that specifies when a pattern-target pair is allowed in a mapping. When
defining ℓp we assume bigraph definitions such as VT , ctrlP and prntT are available for
pattern/target bigraphs. For clarity we define ℓp over bigraph nodes, e.g. u ∈ VP , although
formally ℓp is over SIP graph vertices (e.g. VG) and these are inverse-mapped into their
bigraph representation for checking compatibility.

We define ℓp as the logical conjunction of two sub-functions, i.e. ℓp(u, v) = ℓp1(u, v) ∧
ℓp2(u, v). ℓp1 ensures the bigraph controls are maintained, while ℓp2 introduces cardinality
constraints based on sites/regions.

ℓp1(u ∈ VP , v ∈ VT ) =
{

t if ctrlP (u) = ctrlT (v)
f otherwise

Simply states that entities must maintain their controls.
For ℓp2 , we assume δ− : Vp → N is the function determining the number of in-edges for

an entity ignoring regions (ordinal n), and likewise δ+ : Vp → N as the number of out-edges
of an entity ignoring sites (ordinal m)4.

We then define:

ℓp2(u ∈ VP , v ∈ VT ) =



t if prnt(u) ∩ n ̸= ∅ ∧ δ−(v) ≥ δ−(u)
t if prnt(u) ∩ n = ∅ ∧ δ−(v) = δ−(u)
t if prnt(u)−1 ∩ m ̸= ∅ ∧ δ+(v) ≥ δ+(u)
t if prnt(u)−1 ∩ m = ∅ ∧ δ+(v) = δ+(u)
f otherwise

Where m and n are the sites/regions of the pattern bigraph. The vertex compatibility
function replaces the regions/sites with the semantics of how they should be matched, e.g.
that entities connecting sites can have any number of additional children including none, but
entities without sites must match out-degrees exactly.

4 As described in Definition 1, ordinals are used to represent the place graph interfaces, such that, for
example, n = 2 = {0, 1} works as an (ordered) set with two points (roots) that can connect to the wider
context.
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Figure 5 An example of flattening—links become cliques between port vertices, and closure
nodes, shown as solid green, are added for closed links.

3.2 Link Graph Encoding
Once we have an encoded place graph we flatten the hyperedges in the link graph into it so we
can treat links as vertices in our encoded graph. The key challenge is allowing non-injective
matches for open links to cover the case where, for example, two open links are merged in
the context. Unlike the place graph encoding, link graphs are always flattened the same way
regardless of whether they are targets or patterns.

Let BL be a concrete link graph: (VB , EB , ctrlB , linkB) : X → Y , and ϕ{P,T }(DP) :
(VD, ED) be a (pattern or target) encoding of a place graph DP. We define the flattening
function ϕf : ϕ{P,T }(DP) × BL 7→ (V, E) that given an encoded place graph produces a new
flattened graph.

Intuitively flattening creates a new vertex for every port (Definition 2) in the link graph,
and connects these as a child of their corresponding entities. As arities are fixed, as is the
number of port vertices to be added. The vertex compatibility function ensures that port
nodes can only match with other port nodes in a subgraph isomorphism. As ports are treated
separately to entity nodes, they do not contribute towards the δ−, δ+ values in the place
graph encoding. Port vertices are wired based on the existing links, i.e. if they shared a link
in the bigraph they share a link in the flattened representation. However as graphs do not
support hyperedges the edges are encoded by forming a clique between the ports.

Converting links to cliques between port vertices is sufficient to encode open links. For
closed links we have the following additional constraints:

1. Closed links in the pattern cannot map to open links in the target.
2. Closed to closed link mappings can only be one-to-one and have identical connected sets.
3. Closed links in the target can still be mapped to by many open links.

We implement these constraints by adding additional closure vertices en for each closed
link clique encoding, to represent the “closing off” of these links. The closure vertex is linked
to all port nodes in a closed link clique, and we add an equal-degree constraint to each closure
node to enforce injectivity, i.e. each closed link in the pattern can only map to a single closed
link with an identical adjacency set. The encoding for a link graph featuring both open and
closed edges is shown diagrammatically in Figure 5.

Formalising flattening.

Given concrete link graph: BL : (VB , EB , ctrlB , linkB) : X → Y , and ϕ{P,T }(DP) : (VD, ED)
an encoding of a (pattern or target) place graph D (where VB = VD), we define ϕf :
ϕ{P,T }(DP) × BL 7→ (V, E). We let ÊB = {e ∈ EB | linkB(p) = e, p /∈ X} be the set of
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closed links in BL, and we have V = VD ⊎ PB ⊎ ÊB , where PB are the ports of BL (defined
in Definition 2), and one closure node is added for all closed links. We re-use the bigraph
edge identifier as a vertex identifier in the flattened graph. For edges, E = ED ⊎ {(v, p) | p =
(v, i) ∈ PB}⊎{(p1, p2) | p1, p2 ∈ PB , linkB(p1) = linkB(p2)}⊎{(p, e) | e ∈ ÊB , linkB(p) = e}.
As we build edges with linkB(p1) = linkB(p2) we always get two directed edges e.g. (p1, p2)
and (p2, p1) between two linked ports, and the clique structure is constructed automatically
through this restriction to binary edges. Additional edges point port vertices to the closure
nodes for the closed link representation.

Finally we extend the vertex capability function for place graphs ℓp (Section 3.1.1) to
include extra link constraints:

ℓ(u, v) = ℓp(u, v) ∧


t if u ∈ PP ∧ v ∈ PT

t if u ∈ ÊP ∧ v ∈ ÊT ∧ deg−(u) = deg−(v)
f otherwise

This expresses that ports can only map to ports, and closure nodes can only map to closure
nodes with the exact same in degree, where deg− is the standard in-degree function.

3.3 Encoding Size
A key challenge with the existing SAT solver based algorithm is the large number of clauses
required to encode the problem. On the other hand our SIP encoding requires a modest
number of nodes and edges, with nodes growing linearly and edges quadratically (due to the
clique representation). The number of nodes and edges for a pattern and target bigraph is as
follows, where |e| = |link−1

G (e) ∩ PG| is the cardinality of a hyperedge e ∈ EG when counting
only ports.

Pattern bigraph P : ⟨i, X⟩ → ⟨j, Y ⟩

|V | = |VP | + |PP | + |ÊP |

|E| =
∑

v∈VP

δ−(v) + |PP | +
∑

e∈EP

|e| · (|e| − 1) +
∑

e∈ÊP

|e|

Target bigraph T : ⟨n, X ′⟩ → ⟨m, Y ′⟩

|V | = |VT | + n + m + |PT | + |ÊT |

|E| =
∑

v∈VP

deg−(v) +
∑
s∈n

deg−(s) + |PT | +
∑

e∈ET

|e| · (|e| − 1) +
∑

e∈ÊT

|e|

3.4 Checking Constraints
To complete the encoding for standard bigraph matching, we require one additional constraint
in the case where a region may have multiple children in the pattern graph—this introduces
the rule that all of the child nodes must remain siblings relative to each resultant parent node
that substitutes the abstract region during bigraph composition. We cannot validate this
during the encoding stage due to the loss of this information from stripping regions in the
pattern graph, and as a result the returned solution set may return a superset containing false
solutions where the assigned target vertices do not share a parent. An encoding workaround
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Figure 6 (a) Example instance showing need for transitive closure to avoid the parameter also
appearing as a context; (b) Example instance with shared site in pattern. No matches are possible
in either example.

would require the underlying SIP algorithm to be able to support pattern vertices that can
encapsulate multiple target nodes in a matching assignment, however this would stray too
far from the idea that any existing SIP solver that supports direction and labelling can be
used for bigraph matching. We instead deal with this underconstrainedness by implementing
a checking constraint on top of the constraint programming model through analysis of the
input graphs and their vertex assignments whenever this case occurs—this enforces that a
solution is only valid when the set of children of each region all share the same set of parent
vertices once mapped to their corresponding target vertices. A similar constraint is also
required in the case where we wish to support bigraphs with sharing, where we consider sites
with multiple parents rather than regions with multiple children.

Similar constraints are required for the existing SAT encoding to handle the same
conditions, so although these are not implemented directly in SIP, evaluating the two
approaches against one another remains a fair comparison.

Constraints Imposed By Sharing

Our encoding in addition to the constraint described above is enough to perform matching
for Milner’s original bigraph formalism. However, bigraphs with sharing cannot be fully
supported5 without additional constraints that ensure firstly, that we do not try to form a
bigraph where a site also ends up as a region i.e. the DAG property is violated from a cycle
being introduced; and secondly that shared sites contain exactly the same elements.

Figure 6a shows an example where it seems there are valid matches, but sharing leads to
an invalid context/parameter. Regardless of which of the two possible matches we choose,
the remaining vertices are captured by site 0 in the parameter. However, this same path
needs to rejoin the pattern through the context (region 1). As the same (concrete) bigraph
cannot appear in both the context and parameter at the same time, both matches are invalid.

5 Sharing within a pattern would be possible, but not on the interfaces.
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To compute this constraint we check that no vertex in the match is transitively connected
through prnt to any vertices in the parameter, that is, you never go upwards to reach the
parameter.

Figure 6b shows the second sharing constraint, which is symmetric to the region constraint
required for the standard bigraph formalism. As the site is shared it must include only, and
all, entities shared by the two parents. In this example that means it must contain only a
single A entity. This means there is nowhere in the parameter for the additional A children
to go and so there is no match.

We implement both these constraints through analysis of the input graphs and their
vertex assignments, ensuring all solutions returned are valid. These constraints always hold
for standard bigraphs so it is safe to use them in all cases, although as an optimisation we
detect sharing and only enable them for bigraphs with sharing.

The ease of implementing sharing constraints demonstrates a further advantage of our
SIP encoding over the existing SAT algorithm: we can easily implement further variants
of the bigraph matching problem by specifying additional high-level constraints instead of
configuring the low-level set of clauses to support new conditions.

3.5 Nogood Recording

When enumerating solutions, the bigraph matching problem does not consider a permutation
of open link assignments to be a new separate solution if there already exists a solution
with the same place graph vertex and closed link assignments—this will result in the SIP
solver returning “duplicate” solutions in its solution set which, whilst still technically valid
solutions that differ in their vertex assignments, should not increment the total number
of solutions found. We thus make use of the constraint solver’s inbuilt nogood recording
functionality where we insert a nogood upon finding a new valid solution, which records the
current assignments of the place graph vertices and closure vertices such that any future
solutions found with the same set of assignments are disregarded by the solver. This ensures
that the set of solutions found by the SIP solver for an encoded bigraph matching instance
will always bijectively match the set of solutions found by existing bigraph tools.

4 Implementation and Evaluation

We implemented [3] the encoding and SIP solving process within the Glasgow Subgraph
Solver [22] due to it being the state of the art for subgraph solving. However, our approach
could be implemented using any solver which supports solution enumeration, directed graphs,
and a way of specifying vertex compatibilities.

We compare our SIP implementation to BigraphER’s existing SAT approach on systems
with dual Xeon E5-2687A v4 CPUs and 512GBytes RAM, running Ubuntu 18.04. To allow
experimenting with a large number of instances, we perform up to 30 matching problems in
parallel on the same machine. The SIP solver is compiled with GCC 7.5 while BigraphER is
compiled with OCaml 4.10, statically linked to MiniSAT [13] compiled with GCC 9.3, and
then copied to the benchmarking machine. For both solvers we measure the steady-clock
time required to call the main solver function that includes generating clauses or constraints,
but not the time taken to read input files from disk.6

6 In an application context, calls to a solver would be made directly.
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Figure 7 Comparing the performance of the SIP, SAT, and Pseudo-Boolean (PB) approaches.
On the left, the cumulative number of instances solved over time for all three approaches. On the
right, comparing SAT and SIP on an instance by instance basis; point colour indicates the number
of solutions found, and shape the benchmark family.

As an additional point of comparison we have also implemented a pseudo-Boolean variant
of the SAT algorithm, i.e. with direct cardinality constraints when encoding sites. The
implementation is through BigraphER with MiniCARD [19] as the underlying solver.

Instances are drawn from two real-world models: savannah models a mixed-reality
system [9] where children must work together in the physical world to hunt virtual impala,
and 80211 that models the 802.11 MAC protocol [11]. In each case instances are recorded
from steps to compute the full transition system of the model. Existing public datasets
contain only relatively small bigraphs due to limitations of earlier solvers, and so to test
scalability we additionally generate larger instances based on the conference call example of
Milner [24, chapter 1]. In this case we generate larger instances by not only allowing the
existing bigraph to reconfigure, e.g. for agents to join calls, but also rules that add additional
agents, computers, rooms and buildings at random. We have two variants of the conference
example conf and conf_noshare that allow/disallow sharing.

Instances use BigraphER’s text based bigraph representation, which is essentially an
adjacency matrix with additional entity type and link information. There are 11,176 matching
instances in total and we are making these freely available, along with the results in this
paper [2], to allow future comparative work. Of the 11,176 instances, 1,660 are unsatisfiable
(i.e. no rewriting can be applied). To give us confidence in our implementation, we verified
that the SAT and SIP approaches returned the same set of solutions for all of these 11,176
instances.

4.1 Performance

Figure 7a shows the cumulative number of instances that can be solved individually with a
timeout of t (x-axis), and so the curve further to the top and left shows the better solver.
The horizontal distance between the lines shows the increase in timeout required for both
solvers to solve the same number of (but not necessarily the exact same set of) instances,
and measures aggregate speedup [17]. In this case, no instance takes the SIP solver more
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than 4,516ms to solve, while the SAT solver requires 820,117ms to solve its hardest instance,
giving an aggregate speedup of 181. The pseudo-Boolean solver performs similarly to SAT
especially for the harder instances, although there does seem to be a significant benefit for
smaller instances. When solving many instances, i.e. when generating a transition system,
we expect the pseudo-Boolean solver to be beneficial as it generates less clauses that would
need to be garbage collected by OCaml. As expected given the encoding, the number of SAT
clauses increases rapidly as the problem instances increase in size.

Figure 7b compares the per-instance runtime for both the SAT and SIP solver, where
any point below the mid-line implies SIP outperforms SAT for that instance; the colour of
each point gives the log of the number of solutions, with unsat instances shown in black.
We see the SIP always outperforms the SAT solver for all instances. The consistency of the
speedups seen is interesting, especially given the difference in techniques used by the two
approaches. Further experiments with non-default configurations of the Glasgow Subgraph
Solver show that for bigraph instances, neither neighbourhood degree sequence filtering
nor supplemental graph constraints make much of a difference to performance. One might
guess that perhaps all instances are computationally easy for any reasonable solver, and that
long-running instances are due to either initialisation costs or the cost of enumerating large
numbers of solutions. However, things are not this simple: some of the hardest instances
are unsatisfiable, take hundreds of thousands of decisions to solve, and spend most of their
runtime doing this search. In fact, close inspection of solver statistics suggests that the
hard unsatisfiable instances contain very many near-solutions, that fail only on the checking
constraints discussed in Section 3.4. This suggests that most of the performance gain comes
down to the smaller encoding size and faster propagation speeds of the SIP solver, rather than
any algorithmic cleverness—although there is still the risk that an insufficiently advanced
solver will perform extremely badly on some instances [21]. As future work, we intend to
investigate ways of speeding the solver up on these instances, either by using a propagating
constraint, or through generation of small conflict clauses.

Finally, although the the difference in solve time for the real-world instances, i.e. savannah
and 80211, can seem modest, when generating transition systems for verification the solve
routine can easily be called thousands of times. As such any speedup is likely to have a high
impact on total model generation time.

5 Conclusion

We have shown that the bigraph (with sharing) matching problem can be considered a
special case of the subgraph isomorphism problem with additional constraints to handle
site/regions, open/closed links and sharing. Through an encoding from bigraphs to graphs
with a vertex compatibility function, we can integrate with existing SIP solvers such as
the Glasgow Subgraph Solver. We use this to improve on the state of the art SAT-based
solver for bigraphs (with sharing), and show significant improvements to performance and
scalability including an aggregate speedup of 181 when performance is compared for over
11,000 instances.

Future work

While the new solver already significantly outperforms the SAT approach, there is scope to
optimise further, for example using symmetry breaking to reduce the impact of cliques in
the encoding, adding further inference that exploits the structure of the labelling function,
and using propagation rather than solution checking for sharing.
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We expect to see our approach integrated into BigraphER as the new default matching
algorithm, allowing a wider range of models to be efficiently manipulated.

Further afield, we wish to extend the algorithm to capture additional bigraph variants—
something that was particularly difficult to do through the low-level CNF encoding of SAT.
There are many extensions to the bigraph theory, such as local bigraphs [23] that support
locality of names, e.g. to model restriction in the π-calculus, and directed bigraphs [16].
Just as sharing introduced a small number of additional constraints, e.g. transitive closure
(Section 3.4), we believe that supporting additional bigraph extensions is possible, and
requires significantly less effort than the SAT encoding, due to high-level constraint-based
reasoning. Once extra variants are supported we will be able to perform a comparative
study with existing solvers for these variants (e.g. [12]), to learn from and share new solving
techniques.
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